
NASA Contractor Report 178385

The Computational Structural Mechanics Testbed
Architecture: Volume I1 - Directives

(hASa-Ca-178365) BEE C C M I t ! I l ¶ l C I I L b189-22 133
L 'IBUC IUR AL H EC5A Y I C 5 1 6 Z Z 6 E C L iCEll BCTUBE -
ItCLUBk 2: DIREC'PIFPS (LockhEed Cissiles a n d
Ztace Co.) 364 F CSCL 20K Onclar

63/39 020 15 I5

Carlos A. Felippa

Lockheed Missiles and Space Company, Inc.
Palo Alto, California

Contract NAS1-18444

February 1989

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

Preface

The first three volumes of this five-volume set present a language called CLAMP, an
acronym for Command Language for Applied Mechanics Processors. As the name
suggests, CLAMP is designed to control the flow of execution of Processors written for
NICE, the Network of Interactive Computational Elements, an integrated software
system developed at the Applied Mechanics Laboratory.

The syntax of CLAMP is largely based upon that of a 1969 command language called
NIL (NOSTRA Input Language). The language is written in the form of free-field source
command records. These records may reside on ordinary text files, be stored as global
database text elements, or be directly typed at your terminal. These source commands are
read and processed by a n interpreter called CLIP, the Command Language Interface
Program. The output of CLIP does not have meaning per se. The Processor that calls
CLIP is responsible for translating the decoded commands into specific actions.

NIL and its original interpreter LODREC, which now constitutes the “kernel” of CLIP,
has been put to extensive field testing for over a decade. In fact NIL has been the input
language used by all application programs developed by the author since 1969 to 1979.
(NIL also drives the relational data manager RIM developed by Boeing for NASA Lang-
ley Research Center.) During this period many features of varying degree of complexity
were tried and about half of them discarded or replaced after extensive experimentation.
CLAMP represents a significant enhancement of NIL, particularly as regards to directive
processing, interface with database management facilities, and interprocessor control. The
current version is therefore believed to be powerful, efficient, and easy to use, and well
suited to interactive work.

The present Manual is a greatly expanded version of the original Mitrch 1080 vcrsion,
Because of its length, the material has been divided into five

Volume I (NASA CH 178384) presents the basic elements of the CLAMP language and
is intended for all users. Volume TI (NASA CR 178385), which covers CLIP directives, is
intended for intermediate and advanced users. Volume I11 (NASA CR 178386) deals with
the CLIP-Processor interface and related topics, and is meant only for Processor devel-
opers. Volume IV (NASA CR-178387) describes the Global Access Library (CAL) and is
intended for all users. Volume V (NASA CR-178388) describes the low-level input/output
(I/O) routines.

All volumes are primarily organized as reference documents. Except for feeble at-

revised on April 1981.
voliimes, which cater t o different user levels.

c

0

1

tempts here and there (e.g., s3.1 in Volume I and Appendix C in Volume 111), the presen-
tation style is not tutorial.

a

i i

Acknowledgements

The ancestor of CLIP, LODREC, was patterned after the input languages of ATLAS and
SAIL, two structural analysis codes that evolved at Boeing in the late 1960s. More modern
language capabilities, notably command procedures and macrosymbols, have been strongly
influenced by the UnixTM operating system and the C programming language. The Unix
“shell/kernel” concept, in fact, permeates the architecture of the NICE system, of which
CLIP is a key component.

The author is indebted to the many CLIP users for constructive criticism and sugges-
tions that have resulted in steady improvement of the interpreter, the CLAMP language,
and its documentation over the past four years. Special thanks are due John UeRuntz, Don
Flaggs, Rill Greene, Stan Jensen, Peter Kellner, Warren Hoskins, Tina Lotts, Ian Math-
ews, Bill Loden, Charles Perry, Charles Rankin, Jan Schipmolder, Gary Stanley, Brian
Stocks, Lyle Swenson, Phil Underwood, Frank Weiler and Jeff Wurtz. Dave Cunningham
contributed VAX/VMS environment query routines.

The development of CT,IP during the pcriod 1980-1981 was supported by the Advanced
Software Architecture Project of the lndependcnt Research Program of 1,ockheed Missiles
and Space Co., Inc. The support received from 1982 to date from MSD’s Structures is
gratefully acknowledged. The development of several CLIP enhancements reported here
has been supported by NASA Langley Research Center on contracts NAS1-17660 and
NAS 1-18444.

...
111

Contents

1

2

3

4

5

6

7

a
9

10

11

12

13

14

15

16

17

18

19

2 0

Introduction . 1- 1

Directive Format . 2- 1

Input Redirection . 3- 1

Macrosymbols . 4- 1

More on Macrosymbols . 5- 1

Command Procedures . 6- 1

Nonsequential Command Processing . 7- 1

Global Data Manager Interface . 8- 1

Local Data Manager Interface . 9- 1

SuperCLIP . 10-1

Directive Classification . . 11-1

ABORT . 12-1

ADD . . 13-1

ALIAS . 14-1

CALL . . 15-1

CLOSE . 16- 1

C O P Y . . 17-1

DEFINE . 18-1

DELETE . . 19-1

DO . 20- 1

iv

Contents (continued)

i

w

2 1

22

23

24

25

26

27

28

29

30

,3 1

;3 2

;3 3

34

3 5

:I 0

:I 7

31’a

31 8

39

4 0

DUMP

ELSE .
ELSEIF .

ENABLE

END .
ENDDO .
ENDIF

ENDLOG .
ENDWHILE .
EOF

EOL .

FCLOSE .
FIND .

FLUB .
FOPEN .

FPRINT .

FREWIND.

GAL2MAC .

GENERATE .

GET

HELP .

21-1

22- 1

23- 1

24- 1

25-1

26- 1

27- 1

28-1

29- 1

30- 1

31-1

32- 1

33- 1

34-1

35- 1

36- 1

37-1

37a-1

38-1

39- 1

40- 1

V

Contents (continued)

4 1 IF .
42 J U M P .

43 LIST .
44 L O A D .

45 LOCK .

46 LOG .
46a MAC2GAL .

47 O P E N .

48 PACK .

49 PRINT .
50 PROCEDURE .
5 1 PUT

52 REMARK .
53 RENAME .
54 RETURN .

55 RUN .
5 0 S E T .

57 SHOW

58 SPAWN .
59 STOP .

60 TYPE .

41-1

42-1

43-1

44-1

45-1

46-1

46a-1

47-1

48-1

49- 1

50- 1

51-1

52-1

53-1

54- 1

55- 1

56- 1

57- 1

58- 1

59- 1

60- 1

vi

Contents (concluded)

4
61 UNDEFINE .

02 UNLOAD .
63 WALLOCATE .

64 WCHANGE .
65 WCLOSE .
06 WDEALLOCATE

07 WDEFINE.

07a WDIMENSION .
68 WFLUSH .

09 WGET .

70 WHILE .
7 1 WMAP .
72 WMARK .
73 W O P E N .

74 WPOOL .

75 WPRINT .
70 WPUT

77 WSET .

61-1

62-1

63-1

64-1

65-1

66-1

67-1

67a-1

68-1

69-1

70-1

71-1

72-1

73-1

74-1

75-1

76-1

77-1

vii

THIS PAGE LEFT BLANK INTENTIONALLY.

viii

1
Introduction

a

1-1

Sectlon 1: INTRODUCTION

$1.1 DIRECTIVES

Directives are special commands that are understood and processed by CLIP, and not
passed along to the Processor. (For a definition of the Processor, see §2 of Volunie I.)
Directives may be entered either by the Processor user or (a.s messages) by the Processor
itself. A directive is to CLIP like an ordinary command is to the Processor.

You may grasp the function of directives by thinking of CLIP as a specialized oper-
ating system that supports interactive applications programming. One of the functions of
operating systems is to provide services of general usefulness to users. To request a service
by your computer operating system you enter a control statement. To request a service
by CLIP you enter a directive.

A directive is distinguished from an ordinary command by beginning with a keyword
attached to a directive prefix. By default this prefix is the asterisk, and this particular
prefix will be assumed throughout the Manual. To illustrate:

*LIST 1NPUT.FIL
LIST 1NPUT.FIL

The first command is a directive because the first item is prefixed by *. The second one is
an ordinary command that is supposed to be interpreted by the Processor that calls CLIP.

The item prefixed by the asterisk must be the first item. For example,

DELETE *X.DATA

is an ordinary command.
An alphabetized list of the present CLIP directives is provided in Table 1.1. Some

directives have commonly used abbreviations that are listed in Table 1.2. Sections 12 and
beyond in the present Manual describe the directives in detail. Those sections are ordered
in accordance with Table 1.1.

1-2

51.1 DIRECTIVES

Table 1.1 CLIP Directives

Name Purpose See

ABORT

ADD

ALIAS

CALL

CLOSE

COPY

DEFINE

DELETE

DO

DUMP

Triggers an abnormal run termination

Redirects input to script source

Defines a short name for a textstring

Redirects input to command procedure

Closes data library(ies)

Copies datasets or records

Defines or redefines macrosymbol(s)

Deletes datasets or records

Introduces FORTRAN-like looping block

Dumps contents of any system file

1-3

Section 1: INTRODUCTION

Table 1.1 CLIP Directives (continued)

Name Purpose See

ELSE

ELSEIF

ENABLE

END

ENDDO

ENDIF

ENDLOG

ENDWHILE

EO F

EOL

Introduces “else” subblock in IF-THEN-ELSE block

Introduces ELSEIF subblock in IF-THEN-ELSE block

“Undeletes” dataset(s)

Terminates definition of command procedure

Terminates label-less DO block

Terminates IF-THEN-ELSE block

Terminates command transcription to log file

Terminates WHILE-DO block

Forces end of command source

Forces end-of-line and clears dataline collector

1-4

51.1 DIRECTIVES

Table 1.1 CLIP Directives (cont inued)

Name Purpose See

FCLOSE

FIND

FLUB

FOPEN

FPRINT

FREW IND

GALSMAC

GENERATE

GET

HELP

IF

JUMP

LIST

LOAD

LOCK

Closes FORTRAN text file

Retrieves information on library, dataset or record

Flushes buffers of data library(ies)

Opens FORTRAN text file and connects to unit

Prints FORTRAN text file attached using FOPEN

Rewinds FORTRAN file attached using FOPEN

Defines a macrosymbol from GAL dataset value(s)

Generates next command(s) by item incrementation

Gets database entity

Lists topic-qualified sections of help file

Tests and branches to label, or introduces an
IF-THEN-ELSE block

Transfers control to label

Lists file, Text Dataset or Text Group

Internalizes dataset(s) from ASCII files

Changes dataset access codes

§32

§33

§34

§35

§36

§37

537a

§38

§ 39

§40

§4 1

§42

§43

§44

§45

1 5

~

Section 1: INTRODUCTION

Table 1.1 CLIP Directives (continued)

Name Purpose See

LOG

MAC2GAL

OPEN

PACK

PRINT

PROCEDURE

PUT

REMARK

RENAME

RETURN

RUN

SET

SHOW

SPAWN

Initiates command transcription to log file

Writes a macrosymbol value to a GAL dataset

Opens data library and connects to LDI

Compresses library

Prints database entity

Initiates definition of command procedure

Stores database entity

Prints “active comment” line

Renames datasets or records

Exits from command procedure to caller

Starts execution of another processor

Sets CLIP environmental parameters

Shows CT,lP environmental parameters

Initiates detached process under VAX/VMS

§46

546a

§47

548

§49

§50

§51

§52

§53

§54

§55

§56

$57

§58

1-6

41.1 DIRECTIVES

Table 1.1 CLIP Directives (continued)

Purpose See Name

STOP

TYPE

UNDEFINE

UNLOAD

WALLOCATE

WCHANGE

WCLOSE

WDEALLOCATE

WDEF I NE

WFLUSH

WGET

WHILE

Terminates RUN-ini t iated processor execution

Terminal-directed LIST

Deletes macrosymbol(s)

Externalizes dataset(s) to ASCII files

Allocates scratch workrecord(s)

Changes logical size of workrecord(s)

Closes backed workrecord(s)

Deallocates workrecord(s)

Defines macrosymbol(s) from workrecord items

Backs modified non-scratch records

Reads database record(s) into workrecord(s)

Introduces WHILE-DO block

1-7

Sectlon 1: INTRODUCTION

I

Table 1.1 CLIP Directives (concluded)

~ ~~~~

Name Purpose See

WMAP

WMARK

WOPEN

WPOOL

WPRINT

WPUT

WSET

Prints Workpool allocation map §71

Marks workrecord (s) §72

Opens backed workrecord (s) § 73

Changes Workpool extent § 74

Prints workrecord (s) §75

Writes workrecords to nominal library §76

Sets workrecord items to given values §77

1-8

Y

$1.1 DIRECTIVES

Table 1.2 CLIP Directive Abbreviations

-

Ab breuiat ion Full name

DEC SHOW DECODED-ITEMS

ECHO SET ECHO

HFILE SET HFILE

RAT PRINT RAT

TOC PRINT TOC

.

1-9

Sectlon 1: INTRODUCTION

I
Y

THIS PAGE LEFT BLANK INTENTIONALLY.

1-10

2
D i rec t ive

Format

.

2-1

Sectlon 2: DIRECTIVE FORMAT

52.1 STANDARD CLAMP FORMAT

This Section deals with the general format of directives. Without exception, directives
obey the so-called standard CLAMP format, which is covered in $3.1 of Volume I. The
following material focuses on the aspects of the standard format that are most significant
when you write directives.

The Directive Verb

The first item of a directive is the directive verb, which is preceded by the directive prefix
(normally the asterisk). The verb identifies in general terms what the directive does. A
few one-item directives consist only of the verb. Examples:

*ABORT
*STOP
*EOF

The action verb on many directives has such a wide scope that it has to be followed by
a verb modifier that circumscribes its meaning. Notable examples of such directives are
PRINT, SET and SHOW.

Parameterized Directives

Most directives are parameterized in one way or another. For example:

*TYPE 1NPUT.DAT

is a parameterized directive that causes the contents of the text file 1NBUT.DAT to be listed
on the terminal. Here TYPE is the directive verb while 1NPUT.DAT is a parameter. If you
look up the description of the TYPE directive in the present Manual you will see a format
description such as

*TYPE Filename

This description style obeys the metalanguage rules covered in $10 of Volume I. The key
point is that Filename is a parameter; that’s why it is shown in lower case italics; capital-
ization of the first letter conventionally indicates that a character string is expected. On
the other hand, the directive verb TYPE is shown in upper-case typewriter style to indicate
a literal, i .e., something that you should write exactly as shown.

Parameter Lists

Parameters need not be single items. Some directives take prurneter lists. A list is a
sequence of items separated by commas. Example:

*DELETE 2.36

The two integers: 2.36 form a parameter list for the DELETE directive. In all CLIP
directives that admit lists, the order of the items is releuant. For the above example,

2-2

f

$2.1 STANDARD CLAMP F O R M A T

*DELETE 36,2

F

would have a different meaning. The first DELETE directive requests that dataset at se-
quence 36 in library 2 be deleted. The second one requests that dataset a t sequence 2 in
library 36 be deleted. As library indices cannot, exceed 30, the second directive is in fact
illegal.

Assignment Directives

The most general form of a parameterized directive is one in which a parameter, or pa-
rameter list, is equated to another parameter, or parameter list. Examples:

*SET UNIT PRT = 8
*WSET IFIBO = 1 , 2 , 3 , 6 , 8 , 1 3 . 2 1
*COPY 1 ,2 = 3,6,ABSTRACT

This directive form is typically used to “assign” or “instantiate”, in some sense, objects
named in the right parameter list to the objects named on the left. Think of the general
form

Verb Destination t- Source

or, if you are mathematically minded,

Verb Left-hand side +- Right-hand side

in which the Verb clarifies the operation. These are called assignment directioes. For some
directives the second list is optional, in which case the equals sign (also called the list
separator) may be omitted. But if the second list is present, you may not omit the equal
sign.

Qualifiers

Directive options are generally specified through qualifiers. A qualifier is a word preceded
by a special prefix, which in CLAMP is by default the slash. For example, the directive

*OPEN /NEW INPUTFIL

opens a. m t u permanent file callcd IflPUTFIL. The hlank hcfote the / is in mmt case8
optional but does no harm.

The key feature of a qualifier is that it is optional, which means that there is always
al default interpretation. If you just type:

*OPEN INPUTFIL

t,his must be a legal directive for opening INPUTFIL. (The default interpretation, by the
way, is open an old file if it exists, otherwise create a new one.)

-

2-3

Sectlon 2: DIRECTIVE FORMAT

In most cases, the position of a qualifier doesn't matter as long as it comes after the verb.
Thus

*OPEN INPUTFIL /NEW

also works in the OPEN directive. This indifference to position is an asset in interactive
work, as the need for a qualifier often comes as an afterthought, after one has typed much
of the non-default part.

A few directives such as DEFINE and WSET require that qualifiers, if any, appear im-
mediately after the verb.

The slash is the default qualifier in CLAMP directives, but it may be changed to
another special character through the use of the SET CHARACTER directive.

Parameterized Qualifiers

Sometimes qualifiers are followed by a parameter or parameter list, to which they aTe
connected by an equal sign. Here is an example: the directive

*OPEN INPUTFILE /NEW /LIMIT=4500000

specifies the capacity of file INPUTFIL, which is the maximum size to which the file may
expand after creation; this is necessary on some computer systems. Just using /LIMIT
wouldn't work; the computer has to be instructed "how big it can get". But it is perfectly
acceptable to have a default capacity, so LIMIT is a directive qualifier and not a directive
parameter .
Directive Output using Macrosymbols

Certain directives are designed to retrieve information from the global database, and to
make this information available to subsequent commands or directives. This information is
stored as the value of variable-like entities called rnacrosyrnbols. The techniques involved
are described in further detail in $4. Here we simply note that such macrosymbols are
specified as purameterized qualifiers. Example:

*FIND RECORD 4.35.STIFFNESS /TYPE=STIFF-TYPE

The FIND RECORD directive searches for a rlatahase record identified by the parameter
list 4.35 ,STIFFNESS. If the record is found, its type code is returned as the value of
macrosymbol STIFF-TYPE, which is created as a result of the directive execution.

2-4

3

3-1

Input
Red irecfion

I Sectlon 3: INPUT REDIRECTION
I

$3.1 MOTIVATION FOR SCRIPTS

A beginner CLAMP user soon gets used to typing commands in conversational interaction
with a processor. But sooner or later the thought arises, “Boy, wouldn’t it be neat if I
could prepare all these commands in advance and just tell CLIP where to find them. That
would save me the work of retyping many of them when I am rerunning similar problems.”

This can in fact be easily done, but first you have to master three terms that are
frequently used in this document: input redirection, scripts, and command procedures.
Input redirection means simply that CLlP is taking its input from a source other than the
standard input file described in 54 of Vol. I. (To save you looking it up there, this file is your
terminal when running in the interactive mode or a system-predefined file when running in
the batch mode.) Redirection can be made to a script or to a command procedure. In this
Section we deal primarily with scripts. Command procedures, which pertain to a more
advanced level, are dealt with in 55.

will process those commands. The script may reside on an ordinary system file, or (less
frequently) on a data library accessible by the global database manager GAL-DMS. Usually
the script is prepared with a text editor but sometimes you can built a script using the
“log file” facility of CLIP.

The ADD directive (alternative name: INCLUDE) is used to instruct CLIP to read a
script. For example, if you type

I A script is a set of commands which is prepared before you run the program that

I

*ADD 1NPUT.DAT

CLIP will begin reading commands from file INPUT. DAT. This file may also contain ADD di-
rectives and this “script nesting” process may be continued for several levels. The following
section gives a tutorial introduction to script preparation.

$3.2 A GENTLE INTRODUCTION TO SCRIPTS

I
A Tutorial Example

You should go through the following example if you have never prepared a CLIP script file
before. All it takes to become a script writer is to be able to operate a text editor. Access
your favorite editor and make a file that only contains two directives: i

*rem Entering script file
*show css

I Let’s say the name of this file is SCRIPT. ADD, which is a legal VMS filename. Now run any
NICE Processor and in response to the prompt type I

~ *add ecript.add

3-2

53.2 A GENTLE INTRODUCTION TO SCRIPTS

You shoiild see a response like:

Entering scr ipt f i l e
,

<CL> Command Source Stack:
Un Lin Rec Ldi Dsn Rap LOC E Name
36 2 0 0 0 0 0 0 SCRIPT.ADD
0 6 0 0 0 0 0 0 $term

i

In response to the ADD directive, CLIP has redirected the input to file SCRIPT.ADD and
begins reading lines from it. The first line is a REMARK directive that causes CLIP to print
the text that follows. The next line is a SHOW directive that asks CLIP to display the
Command Source Stack. The first line of the display should show the current source and
sure enough, it’s SCRIPT.ADD. When CLIP tries to read the third line it detects an end
of file and input returns to the previous command source. As the previous source is the
:terminal, you will see the prompt reappear.

For this simple case, you may visualize the ADD process by imagining that the contents
of the SCRIPT. ADD file replaces the ADD directive line.

REMARK 3.1

Since you are running the example interactively you won’t normally see an echo of the lines read
from SCRIPT.ADD. If you would like to see them you should turn the echo on through a SET ECHO
clirec tive.

A, More Realis t ic Example .
One can hardly justify the work involved in preparing a two-line script file, even if it is used
over and over. For interactive work it is just as quick to type the lines directly. But things
change as your command streams become more voluminous. For example, the following
command stream defines a problem for the example processor studied in Appendix B of
Volume 111:

-

3-3

Sectlon 3: INPUT REDIRECTION

clear
def segments

seg=l b=1.0 e=.9659,.2588
seg=2 b=.9669,.2688 e=.8660,.6000
seg=3 b=.8660,.6000 e=.7071,.7071
seg=4 b=.7071,.7071 e=.6000,.8660
seg=6 b=.6000,.8660 e=.2588,.9659
seg=6 b=.2588,.9669 e=0,1

end
def material

def symmetry

d.ef prestress

def field

em=7.OE4 ; pr=0.2 ; end

xsym=O ; ysym = 0 ; end

sxxO=lOO ; end

line=i f=l.O 1=6,0 p=9
line=2 f=0,1 1=0,6 p=9

end
pri seg ; pri mat ; pri bou ; pri symm ; pri pres ; pri field
build ; gen ; sol
pri res ; pri res/field
stop

The significance of these commands is not relevant here. What is important is that typing
them interactively would be error prone. If you type in one wrong item you wiil have
to begin again. And this is a simple command stream compared to those used in the
production analysis of complex engineering problems.

Further Applications

Two important applications of scripts are noted next.

Ratch Rims. If you run CLIP slipported programs in hat'ch mode, input. rcdirect<ion is
normally used because there is no human sittirig a t a tertninal. Yo11 simply prepare scripts
(or command procedures once you reach that level) arid tell CLIP where the input is. Since
scripts are usable without change in both interactive and batch modes, it is quite common
to perform quick interactive checks before submitting large batch runs.

REMARK 3.2

On many systems you can submit batch runs with the commands typed after the control statement
that runs the Processor. This works well for simple input streams but for complicated ones it is
better to have a script that can be interactively checked.

3-4

$3.4 LOGGING

Archiual. An important attribute of scripts (and of command procedures as well) is that
fhey can he n r c h i r d for dociimentation and lcgal purposes. (Much in thc same way RR
programmers used to archive input data decks in the good old days of punched card input.)
If you plan to archive important scripts, it is a good idea to document them profusely.

53.3 MORE ON SCRIPTS

Parameterization

The essential feature that distinguishes scripts from command procedures is the absence
of input parameters definable as arguments. Script lines are processed “as is”. Therefore,
you would not expect to see arguments in an ADD directive and in fact no arguments are
permitted. You can only give the file name.

What are the practical implications? Consider again the example of $3.2. Let’s say
you want to run this problem several times with different values of p r in the line that
follows def material. Since only a single value is involved, it’s quite easy to change the
file with the text editor before rerunning each case. A slightly more advanced technique
is to replace the number by a prompt string; for example

em=7.OE4 ; pr=tlPoiaaona ratio: ; end

but this solution is limited to interactive work.
The situation would be less clear if you have several parameters, or, more commonly,

if parameterized inputs are interdependent. An example of the latter is be a problem in
which you want to change two dimensions, say A and B, and there are many other inputs
related to those two, for example O.S*A, etc. Eventually a point is reached at which it
pays to use command procedures rather than scripts.

Scripts vs. Command procedures

‘The two big differences between scripts and command procedures are:

1.

:2.

A script cannot be parameterized except through terminal intervention.

Processing of script lines is strictly sequential. There can be no branching or cycling
directives within a script. It follows that scripts are less flexible than procedures.
However, for many applications the additional flcxihility is not, warranted. Scripts
have the advantage of being easier to learn and prepare than procedures, and for
many users that is reason enough.

53.4 LOGGING

Creating Scripts by Logging

13esides the text editor, there is another important way of creating a script: logging com-
inands entered during a conversational interactive session. Suppose you start a CLIP-linked

3-5

Sectlon 3: INPUT REDIRECTION

Processor, and in response to the first prompt you type:

*log save .da t

On receiving the LOG directive, CLIP opens a new card-image file (a log file) called
SAVE. DAT. Whatever you type from now on at the root level will be transcribed to that file.
The transcription will continue until you enter an ENDLOG directive, or the Processor run
is terminated. For example, suppose that the commands that follow the *log command
are

begin nodal d a t a
node = 1 coordinates = 1.4. -4.9, 0.7
node = 2 coordinates = 7.8. -8.1. 3.7
p r i n t nodes 1 , 2

end
*end log

directive terminates the transcription process, and CLIP closes the log file
(i.e., file containing commands entered at the root level). If you would like to check what
was stored there, enter a TYPE or LIST directive. For example:

ll1e ENDL

*type save .da t

and you should get

begin nodal data
node = 1 coordinates = 1 . 4 . -4.9, 0.7
node = 2 coordinates = 7.8, -8.1, 3.7
p r i n t nodes 1.2

end

Note that the ENDLOG directive itself is not stored as long as it appears on a line by itself.
The SAVE.DAT fi6e is a script and so it may be ADDed to reproduce exactly the same

commands you had previously. What’s the difference with text editor preparation? Logging
saves commands that were used to run a Processor, and you could observe the response
to them. This mode is therefore recommended when you do not have a very clear idea of
what the final script will look like.

REMARK 3.3

Logging is also useful when the Processor is not really command driven but asks for specific
data using prompts. What you end up with is an input data file that meets the Processor
requirements. Although such an input file is normally unreadable, using this procedure usually
saves time-consuming manual consultation.

Editing a Log File

In practice the difference between creating scripts by logging commands and with a text
editor is not drastic because it is quite common to have to edit a log file. For example,

.

3-6

$3.5 DATA LIBRARY RESIDENCE

suppose that you enter a wrong command and the Processor gives you an error message.
The wrong command will be in the log file became transcription occiirs inirncdicitdy upon
entering the command line. You will subsequently edit the file to remove the incorrect
line(s); but the overall work may be small compared to the task of building a correct script
from scratch and with no Processor feedback.

REMARK 3.4

On VAX/VMS you can edit from a detached process by using the SPAWN directive, without having
to stop the Processor to start up the editor.

Logging and the Input Level

Suppose that the interactive session goes

*log input.dat
begin nodal data
*add nodal.dat
end
begin element data
*add elem, dat
end
*endlog
*type input.dat

As a result of the TYPE directive you will see that the contents of the log file are:

begin nodal data
*add nodal.dat
end
begin element data
*add elem.dat
end

The important thing to note is that the ADD directives have been logged, but not the
contents of the script files NODAL. DAT and ELEM. DAT referenced by those ADDS. Similarly, if
yoii type a CALL to a procedure the CALL will be logged but not the procedure lines. This
is what the statement “saving lines at root level” means.

REMARK 3.5

In {;he preparation of complex scripts “cutting and pasting” techniques are commonly used. For
example, the ELEM. DAT and NODAL. DAT files noted previously could have been prepared by selective
logging.

- REMARK 3.6

It is possible to ask CLIP to log lines that, are read regardless of input level by specifying an ALL
qualifier in the LOG directive.

3-7

Sectlon 3: INPUT REDIRECTION

$3.5 DATA LIBRARY RESIDENCE

Scripts do not necessarily have to be ordinary files. You can store scripts in data libraries
and access them through the ADD directive.

A script may be stored on a positional data library (DAL or GAL80 form) as a Text
Dataset. A Text Dataset is identified by a pair of items: the Logical Device Index (LDI)
of the library (which must be open) and the dataset name (or sequence number). For
example:

*OPEN 13. MODEL.DAT
*ADD 13, MOTOR-CASE.MODEL.14

opens positional library file MODEL. DAT, which is connected to Logical Device index 13,
and redirects input to Text Dataset MOTOR-CASE .MODEL. 14. If this dataset is a t sequence
number 116, you can also type

*ADD 13, 116
but the specification by name is generally preferable.

A script may be stored on a nominal (GAL82) library as a Text Group. In this case
you have to provide three pieces of identification: the library's LDI, the owner dataset
name or sequence number, and the Text Group name. For example:

*OPEN 13, MODELNOM.DAT
*ADD 13, MOTOR-CASE.SCRIPTS.6. MODEL14

The OPEN directive does the same work as above, but now the ADD redirects input to the
script stored as Text Group MODEL14 of dataset MOTOR-CASE. SCRIPTS. 6.

Putting and Extracting Scripts

One drawback of library residence is that initial preparation and modification of scripts
requires additional steps because you cannot use the text editor on library files.

To prepare a library-resident script, you first make up a file with the text editor.
Then you insert the file into a data library with a PUT TEXT directive. The file can then
be deleted.

To modify a library-resident script, you have to extract it into an editable file using
a GET TEXT directive. The file is edited and reinserted into the library with a PUT TEXT
directive, and the external file deleted.

W h y Libraries?

Obviously, scripts that reside in data libraries are more cumbersome to use and modify.
Why then bother? There are several advantages:

1. Archiuability. Data libraries provide a convenient "encapsulation" mechanism. This
is particularly true on computers that do not have a nice hierarchical file structure.

2. Portability. Frequently your scripts may contain references to other scripts. If scripts
reside on ordinary files, you may be faced with a file naming problem if you move

3-8

$3.6 ADVANCED TOPICS

them to a different computer. For example

*ADD 1NPUT.DAT

works on VAX/VMS, but will not work on the Cray because 1NPUT.DAT is not an
acceptable file name. On the other hand, dataset and record names are not machine
dependent.

3. Transportability. There may be an efficient data library “converter’’ between two
different computers, for example, the Vax-Cray nominal GAL converter written by
Frank Weiler. Placing your scripts into data libraries makes input data conversion
straightforward as opposed to moving perhaps hundreds of tiny files back and forth
with attendant filename incompatibility problems.

4. Storage compaction. On many computers, placing many tiny scripts into a data library
saves disk storage because of the clustering factor. (With current trends in storage,
this is not likely to be an important factor, however.)

$3.6 ADVANCED TOPICS

The following features are occasionally useful for advanced applications, and will be pri-
marily of interest to programmer developers familiar with the interface described in Volume
111. Beginner and intermediate CLAMP users may safely skip this section.

Interrupting a Script using EQF

The run of a script is interrupted if an EOF directive is found. For example, let us say you
prepare the following script:

*set echo = on
l i n e 1
l i n e 2
*eof
l i n e 3
l i n e 4

If you interactively ADD this to the command stream you will see that upon encountering
the EOF line the command input reverts to the terminal. The last two command lines are
ignored.

At first sight this looks rather silly. If you don’t want the Processor to read line
3 and l i n e 4, why put them there in the first place? The answer is that the EOF line
is usually submitted by the Processor as a message, so it is not physically present in the
script.

The main application of EOF messages is error recovery in preprocessor programs. Let
us say that a Processor is reading a problem definition stored as a script, and that serious
errors are detected midway. The Processor could abort the run, but that may not be a
good strategy in interactive mode. The solution is to send an EOF message after notifying

-

3-9

Sectlon 3: INPUT REDIRECTION

the user about the error. Control then reverts to the previous source, which is usually the
terminal, and the user may initiate recovery procedures.

On command procedures, the EOF has the same effect as a RETURN directive.

A D D i n g a Preconnected Unit

An ordinary ADD-file directive such as

*ADD 1NPUT.DAT

involves dynamic file opening and closing. That is, file I N P U T . DAT is opened and connected
to an internal logical unit number such as 36; when the end of file is detected the file is
closed.

Now suppose that 1 N P U T . D A T has been preconnected to the run, for example by an
operating system control statement, and that it is connected to FORTRAN logical unit 6.
If you type

CLIP will simply redirect its input to unit 6, and will not attempt to open a file. When
an end of file is detected input will revert to the previous source but the unit is not closed.

In interactive mode unit 0 (zero) is assumed to be your terminal. Consequently, the
directive

~

*ADD 5

*ADD 0
redirects input to the terminal. Normally this directive would be inserted in a script or
command procedure (or sent by the Processor as message) to request human feedback.
Here is an example of Processor triggered intervention:

CALL CLPUT ('*remark I am very confused. What do you want to do?')
CALL CLPUT (' *add 0')

You may trace the source of an *ADD 0 by entering a SHOW C S S directive. To return input
to the previous source, you enter an EOF directive, which acts as a software end of file.

The READ Qualifier

This final topic is admittedly a highly specialized one. It applies to the following scenario:

1.

2.

3.

The ADD submitted using CLPUT should then have a READ qualifier. Example:

,

The Processor accesses CTIIP only w i n g messages sent using CLPUT;

One of the messages submits an ADD directive, and

The Processor does not interact with the user.
~

program CRUNCH
call CLPUT ('*add/read crunch.dat '1
stop
end

3-10

53.6 ADVANCED TOPICS

where file CRUNCH.DAT consists entirely of directives. The qualifier READ forces the file to
be read through.

To understand the need for the READ qualifier, consider two alternative constructions.

program CRUNCH
c a l l CLPUT (’*add crunch.dat ’)

end
s t o p

CLPUT will process the ADD directive by opening PROCESS.DAT and pushing it into the
command source stack. But the directives in that file will not get processed, because there
is no CLREAD statement to force that to happen. Adding a call to CLREAD, as in

program CRUNCH
c a l l CLPUT (’ *add crunch .dat ’ 1
c a l l CLREAD (’ > ’ , ’ ’1
s t o p
end

has an undesirable side effect. The file CRUNCH. DAT will be processed (“pulled in”) by the
CLREAD call. But when the end of file is detected input will revert to the command source
stack root, that is, the terminal, and a surprised user will be prompted for input.

In summary, the READ qualifier forces file read-through without the bad side effects of
CLREAD.

3-11

-
~~~ 

Sectlon 3: INPUT REDIRECTION 

THIS PAGE LEFT BLANK INTENTIONALLY. 

3-12 



4 
Macrosymbols 

. 

4-1 



Section 4: MACROSYMBOLS 

$4.1 MOTIVATION 

The Need for Variable-Like Items 

Data and special items allow only immediate specification of values. You have to write 
down the item value (or values) when you make up commarids or directives. For example, 
if you type 

SET XYZ = 1.2, 3.6, 8.913 

you obviously know that the command verb is SET, its parameter is XYZ and the three 
numeric items that follow are 1.2,3.6 and 8.13. This is the common case in conversational 
interactive work when commands are composed “on the spot.” 

But suppose that the three numeric values depend on other input values, or on the 
state of the Processor a t  the time the command is read in. It would be desirable to treat 
them like variables and be able to type something like 

SET XYZ = X .  Y. Z 

with the tacit understanding that X, Y and Z are to be replaced by numeric values at the 
time the command is read. Two questions immediately arise: 

e 

e 

How does CLIP know that X is a variable-like item and not the character string ‘X’? 

How is CLIP told that X, for example, is to be replaced by the numeric value i.2? 

Resolving these two questions in a sensible fashion requires eztensions of the command 
language. The set of extensions that addresses these questions forms the macrosymbol 
facility. 

Extending the Language 

In general terms, a macrosymbol facility is a tool by which a command language can be 
extended in power and convenience. The CLIP macrosymbol facility has been designed so 
that there are virtually no limits to these extensions, other than the amount of effort you 
are willing to spend to learn it. 

Through the macrosymbol facility, you can establish variable-like items, perform arith- 
metic manipulations, access built-in functions such as sine or arctangent, rename directives, 
abbreviate procedure calls. You can use macrosymbols in conjunction with the command 
procedure facility described in $6 to set up branching and looping constructs. Finally, 
macrosymbols used in conjunction with the message (mailbox) capability allow the pro- 
cessor to insert values in the command stream for various purposes. 

i4.2 presents an overview of the facilities as presently implemented in CLIP. The 
remaining sections explain in more detail the things you can do with macrosymbols. 

4-2 



- 

$4.2 OVERVIEW 

$4.2 OVERVIEW 

Terminology 

The macrosymbol facility provides a mechanism by which a character string called macro- 
symbol is replaced by another string called replacement text. 

Expansion is generally 
followed by an evaluation process influenced by the type of the macrosymbol. The final 
result is a macrosymbol value. So the complete process can be diagrammed as 

The replacement process is called macrosymbol expansion. 

expansion evaluation 
Macrosymbol =+- Expanded macrosymbol =+ Value 

REMARK 4.1 

The term Umacrosymbol” is frequently abbreviated to macro when there is no risk of confusion 
with unrelated things such as MacroProcessors. This abbreviation is often used here; thus we 
often speak of macro expansions, macro values, etc. 

Table 4 .1  at the end of 54.2 summarizes terminology. 

Implementation 

A macrosymbol is implemented in CLIP as a data structure that contains the following 
information: 

Name. A string of up to 16 characters that identifies the macrosymbol. The first character 
must be a letter or a dollar sign. If a dollar sign, the second character must be a letter. 

Definition. A character string that governs the expansion process. There are two defini- 
tions: external and internal. The external definition is the one you supply when you define 
‘a macro name, and so it is naturally called a mucro definition text. The internal definition 
IS the one saved internally by CLIP; this is called the replacement text. The transition 
from external to internal is accomplished by a process called pre-eoaluation: 

pre-e valuat ion 
Macro definition text 3 Replacement text 

Often the replacement text is identical to the macro definition text, in which case the 
pre-evaluation process reduces to a straight copy. 

Type. The macro type plays a role similar (but not identical) to that of the data type 
of  variables in languages like FORTRAN. The basic types are integer, floating-point and 
character string, with some variations among the last two. The macro type affects the 
pre-evaluation prbcess, expansion and final evaluation. 

- 
Scope. This is an attribute that is important when macrosymbols are used within command 
procedures. It refers to the “visibility” of macrosymbols across procedure boundaries, and 
has  points of similarity with the visibility of variables across subroutines in languages like 
FORTRAN or C. 

- 

4-3 



Section 4: MACROSYMBOLS 

Defining Macrosymbols 

Let us assume you start up a CLIP-supported Processor and that the following conditions 
apply: the Processor is not initiated through SuperCLIP, and the macrosymbol facility is 
available in the CLIP version tied to the Processor. 

Even before you enter the first command, a set of built-in macrosymbols (presently 
68 of them) is available to you. These provide values or functions of general utility; 
for example to evaluate the sine or cosine of an angle or to build logical expressions. 
These macrosymbols are described in the next Section. You should not redefine built-in 
macrosy mbols. 

Macrosymbols that are not built-in must be defined before they can be used. You 
define a new macrosymbol to CLIP by specifying its name, definition, type and scope in a 
DEFINE directive. The basic components of the directive are 

*DEFINE Name = Definition-text 

with options for type and scope. 
m ac rosy m bo1 . 

The same directive is used to redefine an existing 

REMARK 4.2 

Macrosymbols may also be defined by the Processor by submitting a DEFINE message. In addition, 
macrosymbols may be created implicitly as a result of certain directives other than DEFINE. 

REMARK 4.3 

Note that we begin with two assumptions. As for the first one: if a Processor is started by another 
using SuperCLIP, all macrosymbols previously defined are available; they don’t disappear across 
Processor boundaries. 

REMARK 4.4 

Some versions of CLIP are devoid of the macrosymbol facility; this depends on compile-time 
decisions. You may check whether your version has the facility by entering a DEFINE directive. If 
the CLIP response is “Illegal or ambiguous directive,” it doesn’t have it. 

Using Macrosymbols 

When you are ready to use a defined macro in a command or directive, you surround 
the macrosymbol name with two special characters called macro identi5et-s. By default 
these are the angle brackets c and >. The occiirrcnce of a name siirroiinded by these 
identifiers triggers an expansion and evaluation process. This process is performed before 
the command text is parsed but after procedure arguments are substituted in case macros 
are used within a command procedure. 

REMARK 4.5 

We shall see that macrosymbols may be nested within macrosymbols virtually ad infinitum. If 
you become proficient in the use of macros, it is important to keep in mind that expansion always 
proceeds “from the inside out”. That is, tohe name occurring in the innermost pair is processed 
first, and so on until the outermost pair is reached. 

4-4 



54.2 OVERVIEW 

Can Maerosymbols Disappear? 

Any macrosymbol that is not built-in may be “undefined” through an UNDEFINE directive, 
which erases it from the macrosymbol table. More common, however, is automated undef- 
inition triggered by the scope-of-validity rules described later. For example, if a command 
procedure has defined a non-global macrosymbol called SYMBOL, on exit from the procedure 
SYMBOL becomes undefined. 

Built-in macrosymbols may not be undefined. 

Finishing the Example 

We are now ready to finish the example of 54.1. Three macrosymbols are defined by typing 

*DEF X = 1.2 
*DEF Y = 3.5 
*DEF 2 = 8.13 

These directives create three macrosymbols: X, Y and 2, which are defined to be 1 .2, 3.6 
and 8.13, respectively. According to the default typing rules elaborated upon later, these 
three macrosymbols are assigned to be the double-precision floating type. So in fact the 
replacement text internally stored by CLIP is 

Name Replacement text 
X 1.2D+00 
Y 3. bD+OO 
2 8.13D+00 

(You may see the actual definition saved by CLIP by using the SHOW MACRO directive.) 
Now you type the example command as 

Since X is surrounded by the macro identifiers, which we assume to be < and >, CLIP 
knows that X is supposed to be a macrosymbol name, and proceeds to replace it by its 
definition, namely 1.2D+00. The same thing happens for CY> and <Z>, so the command 
upon macro expansion is 

SET XYZ = 1.2D+00, 3.5D+OC). 8.13D+OO 

This is eventually given to the CLIP item parser. The parser of course interprets the last 
three items as floating-point constants and stores them as such in the Decoded Item Table 
for use by the Processor. 

This explanation answers the two questions raised in $4.1. Macro delimiters avoid 
confusion with ordinary character strings: <X> is not the same as X. The replace-by- 
what question is taken care by the DEFINE directives that must precede the appearance of 
macrosymbol names in commands. 

- 

- 

4-5 



Section 4: MACROSYMBOLS 

An Experiment 

If you have never been exposed to macro expansions before, the following experiment 
should be instructive. Run interactively a CLIP supported Processor (preferably a do- 
nothing Processor) and type 

*DEF X = 1.2 
*DEF Y = 3.6 
*DEF Z = 8.13 
*SHOW MACROS 
*SET ECHO = ON, MACRO, DECODE 
SET X Y Z  = < X > ,  C Y > ,  <Z> 

Then try variations such as 

*DEF X = (6/6) 
*DEF XX = '(6/6) ' 
*DEF Y = (3+(1/2)) 
*DEF/F8.1 = 8.13 
*SHOW MACROS 

and try to figure out what happens. 

The replace-name-by-string does not look like a particularly advanced concept. Three 
features of the macrosymbol facility add greatly, however, to the power of this deceptively 
simple replacement scheme. 

1. The macro definition text may contain macro references; thus, the process may be 
nested to virtually any level. 

2. Macrosymbols may contain arguments, and even arguments that are also macrosym- 
bols! 

3. The presence of powerful built-in macrosymbols that may be used as building blocks 
for highly complex arithmetic and logical expressions. 
Table 4.1 provides a summary of the nomenclature used so far, plus more used later 

in this section. 

REMARK 4.6 

The present CLIP macro capability is largely modeled upon the C-language macro processor by 
I). M. Ritchie, a FORTRAN version of which is described in Software Tools by B.W. Kernighan 
and P.J. Plauger, Addison-Wesley, 1976. 

4-6 



Table 4.1. Macrosymbol  Terminology 

Definition -- ._ - Term 

Macro 

Macrosymbol name 

Macros ymbol definition 

Ezt ernal definition 

Inter nul definit ion 

Macros ym bo1 ref erence 

Macrosymbol ezjmnsion 

Macros ym bo1 type 

Scope of definition 

Global macro 

Semilocal macro 

Local macro 

Built-in macro 

An abbreviation for macrosymbol. 

A string of 1-16 characters that uniquely identifies a 
macrosymbol 

A character string that replaces a macrosymbol reference in 
the expansion process. There are two definitions: external 
and internal. 
The definition you write in the DEFINE directive 

The definition saved by CLIP in the macrosymbol table. 

The materialization of a macrosymbol in the text of a com- 
mand by enclosing its name with the macro identifiers, which 
by default are c and >. 
The substitution of a macrosymbol reference by the replace- 
ment text. 

An attribute similar to the data type of variables in FOR- 
TRAN. It controls the pre-evaluation and expansion process , 

A macro definition may be global, semilocal or local as re- 
gards the procedure level in the command source stack. 

A macrosymbol whose definition is valid everywhere in the 
command source stream 

A macrosymbol whose scope of definition is limited to the 
procedure that declared it and subordinate procedures. 

A macrosymbol whose scope of definition is limited to the 
procedure that defined it. 

A macrosymbol predefined by CLIP 

34.3 MACROS WITH S I M P L E  D E F I N I T I O N S  

In the present Section we deal with the simplest kind of macrosymbols: those that lack 
arguments and whose definition text does not contain macrosymbols. The material below 

4-7 



Section 4: MACROSYMBOLS 

describes how such macrosymhols are defined and referenced, as well as the effect of as- 
signing types. The exposition is example orientcd, always proceeding from t.hc spccifk to  
the general. 

Subsequent subsections and those on Section 5 cover increasingly advanced topics: 
macros with arguments, built-in macros, logical expressions, macro arrays, and implicit 
macrosymbol definition. 

Implicit Typing 

The simplest application of macrosymbols entails the straight replacement of its name by 
a character or numeric value. Example: 

*DEFINE PI = 3.14169266358979323 

defines macrosymbol P I  to  be the fairly well known number on the right side. The equal 
sign after PI is mandatory. 

Note that the directive does not explicitly specify the macro type. Consequently the 
default typing rules given in Table 4.2 (at the end of this 5) apply. Since the right hand 
side is numeric and PI begins with the letter P, the default type is D24.16, which means 
CLIP will view its definition as a double-precision floating-point number with 16 digits of 
precision. The internally stored definition of PI will be 

Another example: 

*DEFINE Nq = 61 

This directive defines Nq as an integer macrosymbol equal to 51; integer type is assigned 
because the right-hand side is numeric, the name begins with the letter N and no explicit 
type is given. 

A final example, in which the right hand side contains a character string: 

*DEF FILEX = drc0:[felippa.cliplexample.tes 

The default type here is A ,  which stands for “unprotected character string”, a term ex- 
plained later. 

Explicit Typing 

If the default typing rules are unsuitable you must dedare the macrosymbol type as a 
directive qualifier. Legal types are listed in Table 4.3. The qualifier must appear before 
the name, i.e., after *DEFINE. 

4-8 



§4.3 MACROS W I T H  SIMPLE DEFINITIONS 

The following exemplifies the use of a nonstandard numeric type: 

*DEF/Fl2.4 PI-APPROX = 3.14159265 

This directive defines PI-APPROX as a macrosymbol of data type F12.4, which has an 
interpretation analogous to a field specification in a FORTRAN FORMAT statement. If 
you type SHOW MACRO, you will see that the replacement text of PIAPPROX saved by CLIP 
is 

3.1416 

because you have instructed CLIP to keep only 4 digits after the decimal point and no 
exponent field. 

Pre-evaluation of Arithmetic Expressions 

Next consider a slightly more complex specification: 

*DEF/E10.3 RADIUS = (2/3) 

The right-hand side is a legal arithmetic expression. If you type SHOW MACRO RADIUS after 
this, you will find that the replacement text on the VAX is 

.667E+00 

This indicates that CLIP has, as part of the pre-evaluation feature, in fact processed the 
arithmetic expression before saving the result as replacement text. For numeric macrosym- 
bols the process takes two steps: 

1. The DEFINE-directive processor captures the right-hand side and sends it to the arith- 
metic subsystem to evaluate it. The result comes back as a binary number of integer 
or double-precision floating-point type. 

The result is encoded back into characters according to the macro type, and saved as 
definition. 

2. 

REMARK 4.7 

The results of the encoding process may vary somcwhat from one computer to another. For 
example, on computers with a wider exponent field, the replacement text may be .6673+000. 

REMARK 4.8 

In previous versions of this Manual, pre-evaluation was called immediate eualuation. 

REMARK 4.9 

For the text macros discussed in 55, the pre-evaluation generally reduces to conversion from lower 
to upper case. 

4-9 



Sectlon 4: MACROSYMBOLS 

Deferred Evaluation 

Pre-evaluation works fine in most circumstances but sometimes it has to be inhibited. Such 
is the case, for example, if the definition text contains as-yet-undefined mamosymbols as 
explained in g4.4. To inhibit it, the definition text is enclosed within apostrophes, as in 

*DEF/EIO.3 RADIUS = ’(2/3)’ 

You may verify that the replacement text saved by CLIP is 

(2/3) 

i.e., the directive processor “strips” the apostrophes and saves the definition intact. Now 
suppose you type 

SET VALUE = <RADIUS> 

Macro expansion gives 

SET VALUE = (2/3) 

and the last value evaluates to 0.6666666 . . . in full double precision. Note that 
specifying E10.3 as the macrosymbol type is irrelevant; any other floathg point type would 
produce the same answer. Therefore, if you choose deferred evaluation for a floating-point 
constant, there is no point in specifying a type other than D24.16. 

Replacement 

Here is a sample usage of the example definitions: 

SET PERIMETER = (2.0 * <PI-APPROX> * <RADIUS> 

The macrosymbol occurrences are replaced by the definitions, yielding the macro expansion 

SET PERIMETER = (2.0* 3.1416 * .6667E+OO ) ,  

and the last item is eventually evaluated as a composite floating-point constant, yielding 
the valiie 4.18900944, as you may verify. 

4-10 



? 

~ ~~ ~ 

54.3 MACROS WITH SIMPLE DEFINITIONS 

Table 4.2. Default Typing Rules 

Right-hand side of DEFINE is First letter in Name* Default type 

Numeric A-H, a-h. 0 - Z ,  0-2 D24.16** 

Numeric I-N, i-n I 

Character string Any A 

* If the first name character is S, the rule 
applies to the second character. 

* *  E24.16 on Cray or CDC. 

4-11 



Section 4: MACROSYMBOLS 

Table 4.3. Macrosymbol Type Identifiers 

Type Meaning 

A Unprotected character string. 

Dw.d Double-floating (w  = width, d=decimals). 

Ew.d E-single-floating (w=width, d=decimals). 

Fw.d F-single-floating (UI -- width, d=decimals). 

Gw.d G-single-floating (w=width, d=decimals). 

I Integer. 

N Nearest integer. 

P Protected textstring. 

* Generic (takes type of definition text; used 
only in some built-in macros) 

g4.4 DEFINITION TEXT WITH MACROSYMBOLS 

The definition of a macrosymboi may contain references to other macrosymbols, or to the 
macrosymbol being redefined. Examples: 

*DEFINE PISQUARE = (<PI>^2) 
*DEF N = (<N>+l) 
*DEF/F12.4 BELLCURVE = (l/(l+(CX>*<X>))) 

These three examples involve numeric macrosymbols defined by arithmetic expressions 
which include macrosymbols; the second one redefines N in terms of itself. 

Since the definitions have not beeti enclosed in apostrophes, pre-evaluation takes place. 
Therefore, the macrosymbols on the right-hand side must be defined at  the time these 

! 

4-12 



54.4 DEFINITION TEXT WITH MACROSYMBOLS 

directives appear. Sometimes this is not convenient or even possible, and if so deferred 
evaluation must be used: 

*DEFINE/D PISQUARE = '(<PI>^2)' 
*DEF/I N = '(<N>+l)' 
*DEF/D BELLCURVE = '(l/(l+(<X>*<X>)))' 

The definition is then saved "as is" (except that apostrophes are stripped) and the evalu- 
ation takes place when the macro reference appears. 

REMARK 4.10 

The choice of deferred or pre-evaluation can have a profound effect if right-hand-side macrosymbols 
are redefined in the interim between definition and use of a derived macrosymbol. For example, 
consider the two sequences: 

*DEFINE N = 4 *DEFINE N = 4 
*DEFINE M = (<N>+l) *DEFINE/I M = '(<N>+l)' 
*DEFINE N = 6 *DEFINE N = 6 

WHAT IS <M>? WHAT Is <M>? 

On the left sequence <M> evaluates to 6 whereas on the right it evaluates to 7.  

Text Macrosymbols 

For text macrosymbols that contain macro references in the definitions, the use of apos- 
trophes is generally mandatory. Example: 

*DEF/A OPEN3 = '*OPEN <LDI>, <FILEX>' 

Omitting the apostrophes would cause CLIP to stop scanning after *OPEN because of the 
blank separator. 

4--13 



Section 4: MACROSYMBOLS 

THIS PAGE LEFT BLANK INTENTIONALLY. 

4 -14 



5 
More on 

Macrosy 



Section 5: MORE O N  MACROSYMBOLS 

$6.1 MACROS WITH ARGUMENTS 

It is also possible to define macrosymbols with arguments, so that the replacement text 
depends on the way the macrosymbol is referenced. Up to nine arguments are permitted 
in user-defined macros (some built-in macros may accept more, up to 19). Arguments are 
identified positionally, and are specified in the definition text,. The definition text should 
be enclosed with apostrophes to inhibit pre-evaluation. A simple example: 

*DEFINE POWER = D(($1)*($2))D 

The replacement text is ( ($1) A ($2) ). Now consider the following reference: 

<POWER(2.0;3.0)> 

This expands to 

((2.0)̂ (3.0)) 

which CLIP eventually evaluates to the floating point number 8.OD+OO. 

REMARK 5.1 

Note the use of possibly redundant parentheses. If you omit the parentheses surrounding $1 and 
$2 by writing 

*DEFINE POWER = ’ ($1^$2) ’ 

you will get the same results for <POWER(2.0;3.0)>. But if the arguments are also arithmetic 
expressions surprises may result; for example <POWER(4/2; 3 .O)> expands to <(4/2^3.0)>, which 
evaluates to 0 . 5  instead of 8 . 0  because the exponentiation operator has higher precedence than 
the division operator. 

Argument Specification Rules 

The occurrence of an argument is indicated by the dollar sign $ immediately followed by 
an unsigned integer in the range 1 through 9. This integer is the argument index; thus $1 
means “replace me by the first argument”, $2 “replace me by the second argument” and 
so on. The symbol $0 is also acceptable and calls for replacement by the macrosymbol 
name itself. 

. 

ITnlike procedure arguments, which are identified by keywords, macro~vmhol argiiments 
are strictly positional. Most implementation rules are nonetheless similar: 

1. Macrosymbol arguments are bounded by matching left/right parentheses, and sepa- 
rated by semicolons. 

2. Arguments may be individual data items, lists, or symbolic items. In particular, 
procedure arguments and macrosymbols (with or without arguments) are acceptable. 
An example of the latter: 

CPOWER(<SIND(30)>*2; <COSD(30)>^2>) > 

5--2 



$5.2 SCOPE OF MACROSYMBOLS 

which evaluates to 

COS' 30° 
(sin' 30") = 0.25@.75 = 0.353553.. . 

. 

L 
t 

3. Jf the macrosymbol type is not P, leading and trailing blanks are stripped, and lower- 
case letters converted to upper case. To protect blanks or lower case letters, enclose 
argument text in apostrophes as usual. If the macrosymbol type is P (protected text 
macrosymbol), blanks are preserved and lower case letters are not converted t.0 upper 
case. 

4. Trailing arguments may be omitted. Associated symbols in the macro definition text 
then "vanish" (more technically: they are replaced by a zero-length string). Inter- 
mediate arguments may be omitted by writing consecutive semicolons; the leading 
argument may be omitted by following the opening parenthesis with a semicolon, or 
a closing parenthesis if there is  only one argument. 

EXAMPLE 5.1 

To illustrate the argument replacement mechanism, let us go through an example with the fol- 
lowing macro, which defines the Euclidean length of a 3-vector: 

*def v3length = ((($1)̂ 2+($2)"2+($3)'2)̂ 0.6) 

In what follows, it is assumed that the definition of <PI> is 3.14159 and that formal procedure 
argument HALF stands for 0.5: 

Reference 

*W3length(l;2;3)> 

<:v3length( <PI>^ [HALF] ; [HALF] ̂<PI> ; 0) 

Expansion .--) evaluation 

( (  (1) '2+(2)̂ 2+(3)'2) -0.6) 
--+ 6 4 1  = 3.741667387 

(((3.14169̂ 0.6)'2+(0.6'3.14169)̂ 2+(0)̂ 2) 
--+ 1.776071685 

§5.2 SCOPE OF MACROSYMBOLS 

We have so far covered names, definitions and type. The fourth attribute of a macrosymbol 

(described in $6). If you don't, you may skip this section without great loss. 

4 is its scope. This is important only if you do a great deal of work with command procedures 

When you learn a high-level programming language you probably had to adjust to 
tlhe idea of global versus local variables. For example, in FORTRAN, COMMON variables are 
global to all subroutines that access their coni~r~on block name. Local FORTRAN variables 
are not known outside the sitbroutine they are used. 



Sectlon 5: MORE ON MACROSYMBOLS 

There is a similar concept for macrosymbols. The equivalent of a subroutine is the 
command procedure. Macros may be global, local or semilocal with respect, to command 
procedures. 

A global macrosymbol is known everywhere in the command source stream. Built-in 
macrosymbols are global. Any macrosymbol defined at  the root level is global unless its 
first character is a dollar sign, in which case it is local. 

A semilocaf macrosymbol is one that is defined inside a command procedure and is 
not explicitly declared global or local. A semilocal macrosymbol is known only within the 
procedure level that declared it or any higher procedure level. For example, if procedure X 
calls procedure Y, all semilocal macros defined by X before it calls Y are visible to Y. When 
the procedure that declares a semilocal macrosymbol is exited, the definition disappears. 

A local macro is one whose name begins with a dollar sign. A local macro is not visible 
outside of the procedure level that defines it. When the procedure level falls under that of 
definition, a local macrosymbol disappears. 

To force a macrosymbol defined within a procedure to be global, you write a double 
equals sign after the name in the DEFINE directive. 

REMARK 5.2 

The concept of procedure level is covered in 54 of Volume I.  Here is a summary. The procedure 
level of the root is zero. When a procedure is called (exited) the procedure level is incremented 
(decremented) by one. ADDing a script does not change the level. 

REMARK 5.3 

In previous CLIP versions there were only global and semilocal macros. What is now called 
semilocal was then called local. The new class of local macros was introduced primarily to permit 
the implementation of the DO directive and thus provide a substitute for the departed register 
symbols. 

$5.3 TEXT MACROSYMBOLS 

A text macrosymbol is one whose definition text is to be handled as a character string. 
We have  already encountered some examples in previous sections. In the present section 
text macrosymbols are examined in more detail. 

Text macrosymbols are typed A or P. The former are called unprotected, the latter 
protected. 

I Unprotected Text Macrosymbols 

If you specify type A, the definition t,ext is treated much like an ordinary character string. 
It is best to go through an example. Consider 

i *DEF/A FILENAME = input.dat 

Since you haven’t used apostrophes, CLIP pre-evaluates the definition text and stores 

ti -4 

I 



$5.3 T E X T  MACROSYMBOLS 

INPUT. DAT 

The reference 

k 

OPEN 3.<FILENAME> 

expands to 

OPEN 3,INPUT.DAT 

If the definition text had been enclosed with apostrophes, the replacement text saved by 
CLIP would have been input .dat. But when expansion of <FILENAME> occurs, then the 
text is converted to upper case. The end result is the same. 

A Long Definition Text 

Now let’s consider a longer definition text that includes several words so apostrophes are 
mandatory: 

*DEF/A OTC = ‘*open l’file ; *tac 1 ; *cl l o  

which incidentally illustrates the fact that the definition text may be a set of commands 
and/or directives. The text is saved by CLIP ”as is”. Now suppose you type: 

This expands to 

*open 1.file ; *toc 1 ; *cl 1 

This is evaluated as three directives, with a grand total of seven items and two separators. 

But sometimes this is not what you have in mind; instead you want to retrieve the definition 
text intact. For example, 

*DEF/A TITLE = ‘This is a plot title’ 

will not work if you want the Processor to rctrimc the cxpansinn nf <TITLE> as a plnt titlc: 
lower case is converted to upper, and, worst of all, the string is broken up into five items! 
To “protect” the string yoii should type *DEF/P instead of *DEF/A as explained below. 

Protected Macrosymbol 

For text macrosymbols declared of type P (for “protected”) CLIP will insert a pair of 
enclosing parentheses when the name is expanded. Using the last example: 

*DEF/P TITLE = ‘This is a plot title’ 

5-5 



Sectlon 5: MORE ON MACROSYMBOLS 

Suppose that the macro name is used in 

SET PLOT TITLE = <TITLE> 

This expands to 

SET PLOT TITLE = 'This is a plot title' 

The last item evaluates to the character string This is a p lo t  t i t l e ,  which may be 
retrieved as such by the Processor. Notice that blanks and lower case letters are preserved. 

REMARK 5.4 

If you define TITLE with type A and then try 

SET PLOT TITLE = '<TITLE>' 

then <TITLE> is not a macrosymbol occurrence, because it is enclosed in apostrophes! If you have 
defined TITLE with type A for some reason, you may force a P evaluation by saying 

SET PLOT TITLE = <TITLE/P> 

This technique is explained in more detail later in this Section. 

55.4 BUILT-IN MACROSYMBOLS 

Concept 

CLIP comes equipped with a set of predefined or "built-in" macrosymbols. These 
macrosymbols define constants, variables or arithmetic or logical operations of general 
utility that assist in writing complicated expressions. For example, the macrosymbol PI so 
often used previously is actually a built-in macrosymbol that gives T to 16 decimal places; 
macrosymbol SIN evaluates the sine of its angle-in-radians argument, and so on, 

There are presently over 60 built-in macrosymbols. Some of these are used in con- 
junction with the Local Data Manager and are not treated here. The other ones are listed 
in Table 5.1. Some context-directed macrosymbols, such as MOD, appear in the Table twice 
should it be convenient to distinguish between integer and floating arguments. 

Built-in macros can be categorized into various types described briefly below roughly 
in terms of increasing complexity. 

Predefined Constants 

These are: D2R = n/180 (degrees-to-radians conversion factor), TRUE (integer l), FALSE 
(integer O ) ,  and PI. 

Mat hemat ical F'unct ions 

The basic ones are: ACOS (arccosine), ASIlJ (arcsine), ATAN2 (two-argument arctangent), 
COS (cosine), EXP (exponential), LOG (natural logarithm), SIN (sine) and TAN (tangent). 

&' 

5-6 



$5.4 BUILT-IN MACROSYMBOLS 

1 

Variants of these include LOG10 (decimal logarithm), and ATAN2D, COSD, S I N D  and TAND, 
which work with degree rather than radian angular units. 

There is also the polynomial evaluator POLY, which takes up to five coefficient ar- 
guments. Recent additions include S I N H  (hyperbolic sine), GOSH (hyperbolic cosine), 
TANH (hyperbolic tangent) and QUADRATIC (quadratic equation solver). All return double- 
precision floating values. 

There are four new macros that pertain to random number generation: RANDNORM, 

erence you get a different value unless the sequence is re-initialized using RANDSET or by 
setting an optional argument to a nonzero value (see Table 5.1). 

t RANDSET, RANDTRUN and RANDUNIF. Every time RANDNORM, RANDTRUN or RANDUNIF is ref- 
b 

REMARK 5.5 

ATANZD, COSD, SIND and TAND were named ATAN2G, COSG, SING and TANG, respectively, in previous 
CLIP veraions. The old names will also work. 

Generic Functions 

Macros A B S ,  MAX, MIN,  MOD and S I G N  furnish the equivalent of the generic FORTRAN 
functions of the same name. These can take either integer or floating-point arguments and 
return a result of !;he same type. 

MAX and MIN now take a variable number of arguments (up to 19). 

:Reserved Variables 

IMacrosymbol names E R R O R S T A T U S  and R U N h O D E  are reserved by CLIP. 

13001ean Functions 

Macrosymbols AND, OR and NOT provide the intersection, addition and logical-negation 
I3oolean functions. These operate on integer arguments and produce a TRUE (integer one) 
c r  F A L S E  (integer zero) result. An argument, which is neither 1 or 0 is treated as TRUE. AND 
a.nd OR take a variable number of arguments, up to 19. 

FtEMARK 5.6 

VVith the recent provision of the logical macro expressions discussed in 84.10 there is less need for 
using AND and OR in its primitive form. 

Logical Functions 

The ‘‘IF functions” I F E Q ,  I F L E ,  I F L T .  I F C E ,  TFGT ant1 TFITE cxpand to cillicr TR.IIE (intcger 
one) or F A L S E  (integer zero), depending on an algebraic, floating-point comparison of the 
arguments. 

Stzing Catenator 

Macrosymbol CAT catenates its string arguments into a single output string. Both argument 
arid result are of protected-string type, which means that lower case is not converted to 
upper case and that blanks are respected. The prirnary use of CAT is building legends for 
graphic displays. 

s 

* 

5-7 



Sectlon 5: M O R E  ON MACROSYMBOLS 

REMARK 5.7 

In the present version of CLIP, string catenation can be more easily done wit,ti t,he doulhslash 
operator, just like FORTRAN. For example 

‘The 16-dig value of pi ie ’//<pi> 

is equivalent to (but easier to write than) 

<CAT(The 16-dig value of pi ie ;<pi>)> 

String Matchers 

IFELSE and IFDEF are the most powerful built-in macrosymbols presently offered. They 
are patterned after similar facilities in the C programming language. Both IFDEF and 
IFELSE treat all arguments as character strings and expand to another character string. 
Since they are type A, blanks and lower-case letters are not significant unless explicitly 
protected. 

IFDEF checks whether its first argument is a defined macrosymbol. If so, it expands to its 
second argument; otherwise to its third. Example: 

<IFDEF(LIBFIL; *open 2.<LIBFIL> ; I >  
This means: if LIBFIL is a defined macrosymbol then open a data library whose name is 
the macrosymbol definition, otherwise do nothing. 

IFELSE compares its first two arguments character-by-character. If they are equal it ex- 
pands to its third argument; otherwise to its fourth. For example: 

<IFELSE(<CONVERGENCE>;<FALSE>;*jump :loop ; *return)> 

This means: if the definition of macrosymbol CONVERGENCE is FALSE (Le., integer zero), 
then jump to label LOOP; otherwise return from procedure. 

A recent addition is IFCASE, which simplifies the construction of “CASE” statements 
that depend on comparing a key against values. 

Status Macros 

The value of these macros depend on the run state. Presently they are BATCH, CSLEVEL 
and CSNAME, DATE and TIME. 

S t.ring F’unc t ions 

Macros INDEX, LEN and SUBSTRING will be provided in the future to mimic similar FOR- 
TRAN functions. 

Workpool Macros 

There is a class of built-in macros whose names start with the letter W. These macros 
are used to retrieve attributes of local database entities. These macros, which are in an 
experimental status, are described in Section 9. 



~~~ ~~ -~ 

55.4 BUILT-IN MACROSYMBOLS

Table 5.1. Built-in Macrosymbols

t

Macros ymbol A rgu me nt Result Explanat ion
ref e rence t ype type

Y

x in t

xf l o a t

f l o a t

f l o a t

i n t

f l o a t

f l o a t

f l o a t

f l o a t

P

f l o a t

f l o a t

f l o a t

I

D

D

D

I

D

D

D

D

I

P

D

D

D

Absolute value of argument k .

Absolute value of argument x.

Arc cosine of z; result in radians.

Arc cosine of x; result in degrees.

Logical intersection of arguments k l . . . kn,
2 5 n 5 19.

Arc sine of z; result in radians.

Arc sine of x; result in degrees.

Arctangent of t l / t 2 ; result in radians.

Arctangent of z1/z2; result in degrees.

1 (TRUE) if batch run; else 0 (FALSE).

Catenate protected strings 51 . . .sa, 1 <_
n 5 19.

Cosine of .r: argirment in rnrlians.

Cosine of z; argument in degrees.

Hyperbolic cosine of 2.

See Tables 5.2 and 5.3 for rules on argument and result types.

6-0

Section 5: MORE ON MACROSYMBOLS

Table 5.1. Built-in Macrosymbols (Cont,inried)

Macros y m bo1 Argument Result Ezplanation
reference t YPe t ype

f l o a t

A

A

A

f l o a t

A

f l o a t

f l o a t

f l o a t

I

A

D

A

I

D

I

I

A

A

I

I

I

I

I

Current command source level (0 = root
level)

Name of current command source.

Degree-to-radians conversion factor T / 180
to 16 places.

Date in mm : dd : yy format.

Reserved.

Exponential of z

Integer zero for logical tests.

If string s matches sj (0 5 i 5 IC, k 5 18),
then i else 0.

If s1 is a defined and accessible macrosym-
bol, then s2 else s3.

If string s1 matches s2, then s3 else s4.

If 5 1 = z2 then 1 (TRUE) else 0 (FALSE).

If SI = s2 then 1 (TRUE) else 0 (FALSE).

If z1 5 x2 then 1 (TRUE) else 0 (FALSE).

If z1 < 2 2 then 1 (TRUE) else 0 (FALSE).

If 51 2 z2 then 1 (TRUE) else 0 (FALSE).

~ ~~ ~-

See Tables 5.2 and 5.3 for rules on argument and result types.

5-10

$5.4 BUILT-IN MACROSY MBOLS

Table 6.1. Built-in Macrosymbols (Continued)

Macros ymbol Argument Restilt Explanation
ref e rence type t YPe

<LEN (s) > A

<LOG(x) f l o a t

<LOGlO(x)> f loa t

<MAX(kl; ...; k,)> xint

<MAX (x1; . . . ; x,) > xf loat

<MIN(kl; ...; k,)> xint

<MIN (xl ; . . . ; x,) > xf loat

I

I

I

I

D

I

D

I

I

If XI > x2 then 1 (TRUE) else 0 (FALSE).

If x1 $-- x2 then 1 (TRUE) else 0 (FALSE).

FORTRAN-like substring locator. Not
implemented.

Not implemented.

Natural logarithm of x.

Decimal logarithm of x.

Algebraically largest of kl . . . k,, 2 5 n 5
19.
Algebraically largest of x1 . . . x,, 2 5 n 5
19.

Algebraically smallest of & I . . . k,, 2 5
n 5 19.
Algebraically smallest of 2 1 . . . x,, 2 5
n 5 19.

Remainder of kl / k2.

Remainder of z1/x2.

I f I: - - o (FALSE) Ilwn I : if k - I (TRUE)
thcn 0.

Logical addition of arguments kl , . . k,,
2 5 n 5 18.

See Tables 5.2 and 5.3 for rules on argument and result types.

I Section 5: MORE ON MACROSYMBOLS

Table 6.1. Built-in Macrosymbols (Continued)
- . - ._ - . . - _. - - - _ _ - - I

Mu c rosy m bo1
reference

Argument Result Explanation
type type

<PI> D r to 16 places.

<POLY (2; co; . . * ; C q) > f l o a t D Quartic polynomial co + c1z + - - +
c4x4 . Omitted trailing arguments are
assumed zero.

<QUADRATIC[lI (a; 6 ; ~)) Real part of root x1 of ax2 + 6s + c =
0, where % (X I) 5 X (z 2) .

<QUADRATIC 121 (a; 6; c) > Real part of root 2 2 of az2 + bx + c =
0 , where R(x1) 5 R(z2).

<QUADRATIC [3] (a ; 6; c) > f l o a t D Absolute value of imaginary compo-
nent of roots of ax2 + bx + c = 0.

I

f l o a t

f l o a t

D

D

 ANDN NORM^^ ;z2;k)> F a F a I D Generate element of a normally-
distributed pseudo-random number
sequence with mean value x1 and
standard deviation 52. Optional ar-
gument k initializes the sequence if it
appears (see RANDSET).

I N Initializes random number genera-
tion sequence in use by RANDxxmc
macros. If k < 0, initialize sequence
from clock reading. If k > 0, use
this integer value to initialize the se-
quence.

<RANDTRUN(T~ ; ~ 2 ; ~ 3 ; ~ q ; k) > F,F.F,F,I D Cenerate element of a triincated,
normally-distributed pseudo-random
number sequence with mean value
51, standard deviation z2, min value
5 3 and max value x 4 . Optional argu-
ment k initializes the sequence if it
appears (see RANDSET). I

See Tables 5.2 and 5.3 for rules on argument and result types.

5-12

$5.4 BUILT-IN MACROSYMBOLS

Table 5.1. Built-in Macrosymbols (Concluded)
- -_ .- - ___ - _ _ _ - .- - . --- - -___

Macros ymbol Argum Result Explanation
re fe re nee type t ype

<RUN MODE,

<SUBSTRING(s ; z : j) >

<:TIME>

TRUE>
4

~wxxxxxxx(. . . .) >

xint

xf loat

f l o a t

f l o a t

f l o a t

A.I.1

f loa t

f loa t

f l o a t

D

A

I

D

D

D

D

A

D

D

D

A

I

Generate element of a uniformly-distributed
pseudo-random number sequence with
minimum value z1 and maximum value
x 2 . Optional argument k initializes the
sequence if it appears (see RANDSET).
Reserved.

Absolute value of kl with sign of kz.

Absolute value of z1 with sign of x2.

Sine of z, argument in radians.

Sine of x, argument in degrees.

Hyperbolic sine of z.

Experimental.

Tangent of x, argument in radians.

Tangent of x, argument in degrees.

Hyperbolic tangent of 5 .

Timc of day in h h : mm : s.9 Format.

Integer one for logical tests.

Workpool macros; see Table 9.2.

f

See Tables 5.2 and 5.3 for rules on argument and result types.

6-13

t-

Section 5: M O R E ON MACROSYMBOLS

.
Table 5.2. Rules for Argument Typing in Built-in Macros

Argument
Type Meaning

i n t Arguments are assumed to be of integer type. If a floating point item
is given, it is truncated to integer. If a character string is given, it is
assumed zero.

Arguments are treated as double-precision floating-point numbers. If an
integer appears, it is converted to floating point; for example, <EXP (1) >
is the same as cEXP(1 . O) > . If a character string appears, it is treated
as zero.

Explicit floating-point. At least one argument must be written as a
floating-point item. This affects macros ABS, MAX, MIN, MOD and SIGN.
For example, <MAX (2 : 4 .) > is the same as <MAX (2 . : 4 .) > and evaluates
to floating-point 4. DO.

Explicit integer. All arguments must be written as integers. This affects
macros ABS, MAX, MIN, MOD and SIGN. For example, MAX(2;4) evaluates
to integer 4.

A Ordinary character string. Unless explicitly protected with apostro-
phes, lower case letters are converted to upper case, and leading/trailing
blanks are ignored.

“Protected” character string. Lower case letters are not converted to
upper case, and all blanks are respected. There is no need to use apos-
trophe delimiters.

f l o a t

xf l o a t

x i n t

P

5-14

c

~ _-
~

85.5 MACROSYMBOL ARRAYS

Table 5.3. Rules for Result Type in Built-in Macros

Result
Type Meaning

A Ordinary character string. May be changed to P by writing qualifier P
after macro name.

Double precision with =16 digit accuracy
(Single precision on Cray)

D

I Integer .
N Null: expands to nothing (technically: to a zero length string)

P Protected character string. CLIP encloses the result string in apostro-
phes automatically. May be changed to A by writing qualifier A after
macro name.

!j6.5 MACROSYMBOL ARRAYS

,4 macrosymbol array is a set of macrosymbols with the same “name root” followed by a
bracket-enclosed index. For example:

DIRCOS[ll , DIRCOSC21. DIRCOS131

might identify the 3 direction cosines of a space vector.

directive as illustrated by
Consecutive elements of a macrosymbol array may be simultaneously defined in one

*def/i fibo = 1,2.3,6,8
This directive defines five integer macrosymbols named f ibo (21, where i is 1 through 5 .
More precisely, it is equivalent to the five definitions:

*def/i fibo[l] = 1
*def/i fibo[21 = 2
*def/i fibo[3] = 3
*def/i fib0143 = 5
*def/i fibof51 = 8

5 -15

Sectlon 5: M O R E ON MACROSYMBOLS

The integer enclosed in square brackets is called the macro indez, which can be used as a
select,or in obvious ways. For example:

BEGIN COUNT = <FIB0[4]>

or
*DO $K = 1.6

*ENDDO
BEGIN COUNT = <FIBO[<$K>I>

Arbitrary Index Base

A macrosymbol array does not have to begin at index 1. If you type

*def/i fibor41 = 6.8.13

then you define fibo C414, f ibo CSl=8, and f ibo [SI =13. A zero index is also permitted,
but not a negative one. The above is the same as typing

*def/i fibo[4:6] = 6.8.13

The general definition may contain an index specification as in

*def/i fibo[l:7:3] = 6.8.13

which defines f ibo [I] =6, f ibo [41=8, f ibo[7] =13. The default for the third index is 1 if
the first index is less or equal than the second one, or -1 otherwise. For example:

defines fibo[I21=1, . . . fibo[l]=l2.

of expected values. If the list is shorter, the last valiie is used as a filler. Examples:
In the previous examples tlir! list on the right of fhc eqiinl sign matchw the number

*def /d b[1 : 1001 = (1/3)
*def/i pow[40:80:2] = 2.4.8

The first directive defines the 100 macrosynibols b[l] , b[2], . . . b[1001 and assigns
the value one-third to each one. The second directive defines pow (401 = 2, pow [42] = 4,
pow[44] = . . . pow[80] = 8.

5-16

55.5 MACROSYMBOL ARRAYS

Reference by Index Range

Several macrosymbols that belong to the same array may be referenced by giving an index
range. Example:

DELETE ELEMENTS <K 12 : 43 >

is the same as writing

DELETE ELEMENTS <K [21>, <K [31>, <K 141 >

Notice that the expansion is in the form of a list. As in the case of macro definitions, the
general index reference is

[nl :nz :n3]

which is interpreted in the usual FORTRAN DO style.
The following default rules apply. If n3 is omitted, one is assumed. If nl is omitted

hut a colon appears before n2, the lowest defined index is assumed. If n2 is omitted b i t
i~ colon appears after nl, the largest defined index is assumed. For example, suppose t h t
bb[l21 through bb[24] are defined, then

bb[:iS] same it9 bb[i2: 161
bb[14: :2]
bb[:] same as bb [14 : 241

same as bb 1 14 : 24 : 21

Macrosymbol Arrays with Arguments

Nothing prohibits a macrosymbol array from having arguments. Believe it or not there are
some applications for that complexity. Here is a definition of normalized direction cosines
in space:

*def s = ' ((($1)^2+($2)-2+($3)^2)^.5)'
*def dc = '(($l)/<a($l;$2;$3>>)'. -- defines dc [l l

'((SZ)/<s($1:$2;$3>>) ' , -- defines dc [21
'(($3)/<s($i;$2;$3)>) ' . defines dc 131

It is instructive to figure out what happens if you write c

This should evaluate to the list 0.6, 0.0, 0.8.

sirice the index or indices are attached to the macro name.

r
If you manage to reach this level, keep in mind that the arguments are written last,

5-17

Sectlon 5: M O R E ON MACROSYMBOLS

REMARK 5.8

Built-in macrosymbol QUADRATIC, which solves a quadratic equation, is of this type. For example,

<QUADRATIC Cl : 31 (1 ; 2; l)>

finds the roots of z2 + 2 2 + 1 = 0 and expands to -1, -1 ,O (see Table 5.1).

56.6 LOGICAL EXPRESSIONS

Another way of using the Boolean built-in macros such as AND, OR, or the IFxx series is
through logical ezpressions. The expression form is more readable and easier to remember
since it is similar to high-level language constructions. Table 5.4 lists all elementary forms
of these expressions. More complex ones are obtained by catenating and nesting.

Comparing Numeric Values

The most commonly used logical expressions result from comparing two numeric values.
For example:

(4 /GT 3>
This cannot be a macrosymbol reference, because the first character after < is not a letter.
It cannot be a numeric macro (55.7) because of the presence of the qualifier /GT. So by
default CLIP views it as a logical expression, which evaluates to either 1 (for TRUE) or 0
(for FALSE). CLIP in fact transforms first the above expression to

<IFGT(4;3)>

which is a built-in macro. Since 4 is greater than 3, the macro evaluates to 1.
Another example that illustrates the use of nesting and internal macro references:

< (4 /gt <PI>> /or (2 /le <exp(l)> > >

This evaluates first to (1 /or l> and finally to 1 (TRUE).

types should not be mixed. For example, the expression
Boolean operators /AND and /OR may be used at the same nesting level, but the two

< i /or 1 /or 0 >

is correct; CLIP transforms this to cOR(1; 1 ;O> > which evaluates to 1. On the other hand,

< 1 /or 1 /and O>

is incorrect because of ambiguity. You have to group it to tell CLIP what you have in
mind:

((1 /or 1> /and O>
<l /or (1 /and O>>

The first form evaluates to 0 and the second form evaluates to 1.

5-18

i

..

55.6 LOGICAL EXPRESSIONS

c

Comparing Characters

To test two character strings for equality you can use the EqS relational qualifier. Example:

cabcde /eqs abcde>

This is transformed to

<IFEqS(abcde;abcde)>

which evaluates to TRUE because ABCDE matches ABCDE (the unprotected strings are con-
verted to upper case before comparing them).

There is no NEqS qualifier; use NOT to get TRUE on unmatched strings. For example,

*if <NOT(<<analysis> /eqs dynamic>)> /then

5-19

Sectlon 5: M O R E ON MACROSYMBOLS

Table 5.4. Relational Qualifiers in Logical Expressions

Ezpreseion or subezpression evaluates t o

TRUE if el = e2, else FALSE

TRUE if el 5 e2, else FALSE

TRUE if el < e2, else FALSE

TRUE if e l 2 e2, else FALSE

TRUE if el > e2, else FALSE

TRUE if e l # e2, else FALSE

TRUE if both bl and b2 are TRUE, else FALSE

TRUE if either bl or b2 is TRUE, else FALSE

$5.7 NUMERIC MACROS

There is a final interpretation placed on expressions surrounded by macro delimiters and
which cannot be legally classified as macrosymbol references or logical expressions: riumeric
macros.

Suppose you write an arithmetic expression that looks like a macrosymbol reference:

1 CLIP interprets this as the arithmetic expression

I
I sends it to the item-evaluation subsystem where it gets evaluated to the fraction one third,

and encodes the result back with the result that <1/3> ends up replaced by something like
3.333333333333333D-01. An expression such as <1/3> is called a numeric macrosymbol
reference.

I
5-20

A.

$5.8 TYPE OVERRIDE AT EXPANSION TIME

What are numeric macros good for? After all, typing (1/3) is just as easy tu3 typing
<1/3> (in fact, parentheses are easier to find OII keyboards). There is no tiiffprence if
the Processor accesses ordinary commands through the CLREAD or CLNEXT entry points
described in Volume 111; use of any of these entries implies that CLIP item decoding is
accepted.

But if the calling program uses CLCET to directly retrieve datalines, there is a sig-
nificant difference because macro substitution is effected 6efore the line is delivered. For
example, if you type

CLCET delivers exactly that, but if you write
SET VALUE = (1/3)

SET VALUE = <1/3>

then CLCET delivers

SET VALUE = 3.333333333333333D-01

This can make a difference if the receiving program does not know what to do with (1/3)
but it can deal with 3.3333333333333333D-01.

When does this situation arise? Programs that call CLCET fall into two classes:
NICE conforming Processors whose developers prefer to do their own item parsing, and
command-driven foreign programs connected to CLIP as card-image feeder.

i5.8 TYPE OVERRIDE AT EXPANSION TIME

One final refinement concerning macrosymbol references is worth mentioning. You can
override the macro type in the reference by writing the desired type as a qualifier just
after the macrosymbol name. For example:

< p u p >

(expand to
'3.1416926636897932' *2.008663692318767D+Ol'

whereas if you remove t h e /P yo11 don't get the wclnscd apostrophes. Notti that . if the
imacro has arguments, like EXP, you have to place the type qualifier before the opening
parenthesis.

As of this writing this feature works correctly only for A and P type specifications, but
it will eventually extended to any type.

1

5-21

Section 5: M O R E ON MACROSYMBOLS

THIS PAGE LEFT BLANK INTENTIONALLY.

L

.

5-22

6
Command

Procedures

Sectlon 6: COMMAND PROCEDURES

$6.1 BASIC CONCEPTS

The command-procedure capability of CLIP allows the insertion of a set of predefined
command records at any point in the command source stream. Unlike scripts, selected
portions of the inserted commands can be replaced by text specified in the procedure
reference or “call”. Another important difference from scripts is that commands need not
be processed sequentially; branching and looping constructions may be implemented with
the help of DO, IF and WHILE directives.

CLIP procedures bear faint similarities to FORTRAN subroutines and to assembly-
language “templated” macros. It has to be stressed, however, that a command language
procedure represents source text to be interpreted rather than compiled or assembled.
Although CLIP procedures go through a process called here “compilation” for want of a
better word, the resulting product is not machine code.

These attributes make command procedures more flexible than ordinary programming
languages. Of course, something has to give: the additional flexibility is obtained at
the expense of execution efficiency. Consequently, you should not use a procedure to
carry out detailed number-crunching activities that are best performed by the Processor.
Procedures, like command languages, should be primarily written to define problems and
manage activities .

REMARK 6.1

Although procedures are inherently more flexible than scripts, there is a minor physical limitation
that must be kept in mind when you begin writing command procedures. Dataline length is
strictly limited to 80 characters, whereas with script files you can go up to 132 by increasing the
maximum line input width. The limitation is tied up to the fixed-record-length nature of callable
procedure elements. It follows that you must be prepared to use continuation marks more often
should long commands occur.

REMARK 6.2

The command procedure capability must be specifically activated through an MSC key before
compilation of CLIP’S source code. If CLIP is compiled without the command procedure capa-
bility, the directives discussed in this Section are not recognized.

An Illustrative Example

The motivation behind the use of command procedures can be more easily grasped through
an illustrative example.

A CLIP-supported processor has to solve a geometrically nonlinear structural problem
through a modified Newton-Raphson iteration wliil(b the external loads are kept fixed. Let’s
say that the solution process is controlled by a command sequence such as

t

86.1 BASIC CONCEPTS

SET LOADS 1.26, -2.61
FORM STIFFHESS K
FACTOR K

FORM RHS FI, FA, R
SOLVE K, R, X
INCREMENT D, X
FORCES D, FI
FORM RHS FI, FA, R
SOLVE K, R. X
INCREMENT D, X
FORCES D, FI

SET LOADS 1.44, -2.86
FORM STIFFNESS K
FACTOR K

FORM RHS FI, FA, R
. . .

Here a SET LOADS command sets the value of two external load parameters. The remaining
commands specify stiffness assembly, factorization, and two modified Newton-Raphson
iteration cycles per load step. (The items after each command verb are local matrix
names.)

The repetitive nature of the process makes it a natural candidate for the use of a
command procedure. Let’s call it ILMNR2 (for “increment loads and do two modified
Newton-Raphson cycles”). Here is the procedure definition:

*PROCEDURE ILMNR2 (Pi; P2)
SET LOADS [Pi], [P21
FORM STIFFNESS K
FACTOR K

FORM RHS FI, FA, R
SOLVE K, R, X
INCREMENT D, X
FORCES D. FI
FORM RHS FI, FA, R
SOLVE K, R, X
INCREMENT D. X
FORCES D, FI

*END

Now some basic terminology. The symbols Pi and P2 “hat appear in ,he procedure naming
line are known as jormaf arguments. These arguments appear in the SET LOADS command
a9

SET LOADS [Pi], [P21

Section 6: COMMAND PROCEDURES

where they are later to be replaced by actual arguments supplied in the procedure CALL.
The lwacket delimiters are required to distinguish them from unrelrtt.cd "local" IIRP of p i
and P2; for example as matrix names.

The procedure definition is presented to CLIP, typically by a script file that has it by using
an ADD command. CLIP "compiles" the procedure and puts out a callable version into an
ordinary data file or a data library, as explained later. This version can be invoked by a
CALL directive such as

*CALL ILMNR2 (Plz1.25; P2=-2.61)

The effect of this call is to reproduce exactly the first ten commands of the example
sequence. You can then keep on merrily going:

*CALL ILMNR2 (P1~1.25; P2=-2.61)
*CALL ILMNR2 (P1=1.44; P2=-2.74)
*CALL ILMNR2 (P1~1.49; P2=-2.88)

The use of a procedure here is justified by its labor saving: ten commands are replaced by
one. Plainly the motivation grows stronger as one faces the prospect of executing hundreds
or even thousands of commands in a repetitive fashion.

Nonsequential Command Execution

There is another important motivation for using command procedures. Nonsequential com-
mand execution that involves conditional translers and looping can only be accomplished
within the framework of a command procedure. To illustrate this, suppose that you want
to make the number of modified Newton-Raphson iterations in our example procedure a
variable called NCYCLES. This can be easily implemented as shown:

*PROCEDURE ILMNR2 (Pi ; P2 ; NCYCLES=2)
SET LOADS [Pi] , [P2]
FORM STIFFNESS K
FACTOR K
*DO $N = 1. [NCYCLESI

FORM RHS FI, FA, R
SOLVE K, R, X
INCREMENT D. X
FORCES D. FI

*ENDDO
*END

Now a reference such as

*CALL ILMNR2 (Piz1.25; P2=2.61; NCYCLES=5)

6-4

$6.2 PROCEDURE MANAGEMENT OVERVIEW

c

will result in the iteration loop being executed five times. (Details on the iise of the DO
directive to control command loops are given in Section G.) This example also illiist.ra.tes
the use of argument default t e z t , which is the text that follows after NCYCLES=. Suppose
that the reference to the procedure happens to be

*CALL ILMMR (P1=1.25; P2=2.61)

Since NCYCLES is not specified in the calling sequence, the default value of 2 is inserted in
[NCYCLES], and the loop is executed twice. No default text is given for P1 and P2; if Pi,
say, is omitted then IP11 is “erased” when the line that references it is processed.

With the aid of macros and the self-message facility, one could have the processor take
control of the cycling termination. (For example, if convergence tests performed within
the processor are met.) Thus there is virtually no limit on ”command language power”
afforded through the combined use of these advanced facilities.

g6.2 PROCEDURE MANAGEMENT OVERVIEW

From the example discussed in the previous section it is not difficult to see that a command
procedure consist of three components: header, body, and terminator. The header and
terminator are provided through the PROCEDURE and END directives, respectively. The body
consist of ordinary commands possibly intermixed with directives other than PROCEDURE
and END.

When CLIP encounters a PROCEDURE directive, it enters directive mode and does not
exit iintil the END directive is detected. The result of this process is an “object” version of
the procedure, known as a callable procedure element.

Callable procedure elements may be accessed through CALL directives. You may vi-
sualize the effect of a procedure reference by imagining that its body, with argument text
substituted as indicated, replaces the CALL directive. Text substitution is controlled by
the argument specification mechanism. A procedure body may include CALLS to other
procedures, or may even call itself, and the ensuing call tree can extend down several lev-
els. Thus a seemingly innocent procedure reference can potentially trigger a very complex
sequence of events that entails the processing of thousands or millions of commands.

Two User Roadblocks

Gxporicnce has shown that C‘T,AMP iisors “arriving” a t the proccrliirc I~vcl are d t e n
baffled by two aspects: the parameter-substitution mechanism, and the physical residence
of callable procedure elements.

Parameter substitution may be mildly puzzling to FORTRAN programmers familiar
with the call-by-reference argument passing scheme typical of FORTRAN implementations.
In a command procedure reference, text is passed instead of addresses to data. The
text supplied in the CALL directive is replaced before the command is interpreted. This
linking scheme is known in computer science as call-by-name, and is characteristic of some
strongly-typed programming languages such as Algol.

6-5

Sectlon 6: COMMAND PROCEDURES

Another unconventional feature of parameter passing are the default rules. Occur-
rences of a parameter that is not explicitly specified in the calling seqiicnce are rcplaccd
by default text. The default text is specified when you write the procedure source, An
example of this is provided in the last version of the example procedure ILMNR2, in which
the default value of argument NCYCLES is 2. If default text is not explicitly specified,
occurrences of unspecified arguments disappear.

The second understanding difficulty is tied up to the questions

How are procedure definitions entered?

Where does CLIP put callable procedure elements?

This difficulty is more serious in nature and deserves a fairly detailed explanation. This is
done in the following two subsections.

Preparing a Procedure Source

Most directives are so simple that entering them from a keyboard terminal is trivial. One
could try to define simple procedures in exactly that way: just sit there and type them
while you are running a Processor. Don't. There are two problems with this: I

2 . A keyed-in procedure definition is volatile and not saved unless you have opened a log
file.

~

2. Post-facto editing is out; once the return key is pressed, that line is gone! (The next
subsection tells where.) These disadvantages become increasingly serious in long or
involved procedures, and most real-life ones are so. I

The sensible way to create a nontrivial procedure is to use the text editor. Once the
procedure source text is ready on a data file, it can be inserted in the command source
stream with an ADD directive, and away it goes! If it becomes necessary to change the
procedure, the source file can be easily edited as appropriate, and re-ADDed.

R-esidence of Callable Procedure Elements

CLIP can store a callable procedure element in one of two residence media:

1. A n ordinnry direct-ncress f n r r n n t t d f i l r Crcatcrl through n FORTTI AN 77 OPFN qt;)t.c-

ment. All records of such a file have the same length (80 characters) and contain one
data line. The file name is the same as the procedure name. I

2. A data library managed through the Global Data Manager GAL-DMS. A callable
procedure element is stored

(a) as a Text Dataset if the library is positional (DAL or GAL80 format). The dataset
name is the same as the procedure name. The library is identified by the Logical
Device Index (LDI) specified in a previous SET PLIB directive.

I

I
I

56.2 PROCEDURE MANAGEMENT OVERVtEW

c

(b) as a Text Group if the library is nomirial (GAL82 format). The procedure name
is the same as the Group name. The library LDI and the “owner” dataset. name
(or sequenc,e number) are specified in a previous SET PLIB directive.

In either case, the callable element is a sequence of fixed length (80 characters) card-
image records.

REMARK 6.3

The text of a callable procedure text is basically a copy of the source procedure body, prefaced by
three linkage tables. These tables store argument names, argument default text, labels (explicit
or generated) and their locations within the body. The copy of the procedure body is terminated
by a special marker record.

REMARK 6.4

You may wonder why direct-access files are used in case 1. Wouldn’t sequential access files save
space? The answer is that procedure records are not necessarily processed sequentially. One of
the reasons for using procedures is the ability to branch and loop, and efficient nonsequential
processing demands a direct-access organization.

REMARK 6.5

You should never tamper with a callable procedure element (much the same as you wouldn’t try
to edit object code produced by a compiler). If a procedure has to be changed, edit the source
and reprocess it.

How does CLIP know where to store callable procedure elements? The recommended
method involves the use of a procedure library specification. It is also possible to store
the specification in the procedure declaration itself. Experience has shown that the second
method is confusing and even dangerous unless you are quite experienced. Consequently,
only the first method is explained below.

Residence on Ordinary Files

Suppose that you have prepared (with the text editor) a card-image file named STOOGES
that contains the definition of three procedures:

*PROCEDURE LARRY

*END
*PROCEDURE CURLY

*END
*PROCEDURE MOE

*END

*CALL CURLY

*CALL MOE

*CALL LARRY

Now run a processor - any CLIP-linked processor will do - and enter the following
directive

6-7

Sectlon 6: COMMAND PROCEDURES

*ADD STOOGES

As a result of the ADD, CLIP will read file STOOGES, find three procedures: LARRY, CURLY
and MOE, and create three callable procedure dements. Since no residence specification
appears in the *PROCEDURE line, these will bc khrcc ordinary files named LARRY, CURLY
and MOE, respectively, with perhaps some computer-dependent appended extension (see
Remark) .

REMARK 6.6

On the VAX, the system generated names will be slightly different: LARRY .DAT, C’JRLY .DAT and
MOE. DAT, respectively.

REMARK 6.7

If you would like to see what the callable procedure element files look like, use the TYPE directive;
for example

*TYPE LARRY

REMARK 6.8

What happens if you say *CALL LARRY? Try it and you soon get a “CSS exhausted” catastrophic
error termination. Hint: look for an infinite-recursion condition.

Residence on Data Libraries

Next, consider the case in which the callable procedure are to be stored in a positional
data library called PROCLIB. A possible sequence of directives is

*SET PLIB =2
*OPEN 2,PROCLIB
*ADD STOOGES

The SET PLIB directive specifies 2 as the LDI of the procedure library (there’s nothing
magic about 2, any integer in the range 1 through 30 would do equally well). This LDI
is linked to PROCLIB through an OPEN directive. If no error messages occur after the ADD,
three Text Datasets named LARRY, CURLY and MOE are created. You may verify this by
entering a TOC to print the Table of Contents of library PROCLIB. The callable procedure
element contents may be printed by saying *LIST 2, LARRY, etc.

If PROCLIB is a nominal library the SET PLIB directive is a hit more complicated. since you
have to specify a dataset that will hold the callable procedure elements as Text Groups.
For example:

*SET PLIB =2,THREE.STOOGES
*OPEN 2,PROCLIB
*ADD STOOGES

The callable procedure elements then become three Text Groups in dataset THREE. STOOGES
in library PROCLIB. If this dataset doesn’t exist, it is created.

6-8

$6.3 ADVANCED TOPICS

You are allowed to change PLIB specification at any time during the run. Or you could
l c ~ v c it fixed, say at. 2, and connect different dat.a libraries to the same index.

Rationale for Residence Choice

The original design of CLAMP assumed that all callable procedure elements were to reside
on data libraries. As implementation progressed, it became evident that an alternative
residence medium had to be made available to users.

One of the basic design goals of the NICE architecture, of which CLIP is a part, states that
“a user should not be forced to know architectural aspects beyond those required for ac-
complishing stated needs”. Now for many research projects that involve parameter studies,
knowledge of command procedures is highly desirable, but knowledge of global database
management techniques may be unnecessary. The possibility of storing procedures on
ordinary files obviates the problem.

For production-level engineering analysis, use of hundreds of command procedures is ex-
pected to be commonplace. For this usage level, ordinary data files are patently inadequate
(imagine trying to keep track of hundreds of tiny files that are constantly updated). Data
libraries then provide a powerful and convenient “encapsulation” and archival mechanism.

Another (mild) disadvantage of ordinary-file residence is the fact that procedure names
are restricted to legal file names, and the latter vary from computer to computer. On the
other hand, dataset names and Text Group names are machine independent.

58.3 ADVANCED TOPICS

Long Replacement Strings

If a replacement string specified in a CALL or (as default text) in a PROCEDURE directive
contains internal blanks or lower case letter you want to preserve, you should enclose it in
apostrophes. For example,

*ca l l p l o t t e r (t i t l e = This is a plo t t i t l e)

is not recommended; this is passed as THISISAPLOTTITLE, which is probably not what you
had in mind. The right way is to say

*ca l l p l o t t e r (t i t l e = ’This is a p lo t t i t l e ’)

The replacement text is now passed as

This is a plo t t i t l e
k

;.e., apostrophes are stripped but the text remains intact. If you want to restore the
surrounding apostrophes when TITLE is refercrmd in the body of the procedure, read on.

Sectlon 6: COMMAND PROCEDURES

Protected Argument Substitution

On some applications (e.g., graphics) you may want to "protect" the argument substitution
text with apostrophes to force the item decoder to treat the text as one string, or to preserve
blanks or lower case. For example, let US suppose that the replacement text for argument
TITLE is This is a plot t i t l e (see above). If you write

I [TITLE] L

I in a procedure line, upon substitution this becomes

This is a plot t i t l e

I which ends up broken up into five items. What you want is

'This i s a plot t i t l e '

But to get those surrounding apostrophes, you cannot use

* [TITLE] '

because argument replacement would be inhibited; recall (from Volume I) that apostrophes

after the argument name:

,
I hide everything but hyphenation marks. The solution is to put a P (Uprotect me") qualifier

[TITLE/Pl

No blanks are permitted before and after the slash. Note that this technique is analogous
I to that described for macrosymbols in s4.12, but only the P qualifier is valid for arguments.

Passing Macros and Quote Strings

I Previous versions of CLIP had some restrictions regarding passing macrosymbols and quote
strings as argument text (or as default arguments). The current version does not pose any
particular restrictions and should work as you expect. Example:

*proc plot (tit le="Enter t i t l e : I!; scale="Enter sca le: I t)

I s e t t i t l e = [t i t l e]
s e t scale = [scale]
. . .

I I *end
*ca l l plot (t i t l e = 'Actual t i t l e ' ; scale= <pi>^2) . no prompts
*ca l l plot (scale = (2+<pi>) . now you w i l l get one prompt
*ca l l plot . now you w i l l get two prompts

i 6-10

$6.3 ADVANCED TOPICS

Automatic Deletion of Compiled Procedure Files

If you specify the qualifier DELETE in a CALL directive, and the callable procedure element
resides on an ordinary file, the file will be deleted when CLIP exits the procedure. This
feature is sometimes of value when running “one shot procedures” to reduce directory
file cluttering. For example, suppose that file PROBLEM. SOURCE (a VAX/VMS filename)
contains the source

*proc analyze.inp

(problem analysis input)

*end
*call/delete analyze.inp

. . .

. . .

Executing an *ADD PROBLEM .SOURCE causes the procedure to be compiled, which produces
the file ANALYZE. INP, which is then executed. On exiting from the procedure, the file
ANALYZE. INP, is deleted, so you are not left with an extraneous file in the working directory.
This strategy should be restricted, however, to straightforward input sequences such as this
one.

6.- 1 1

Sectlon 6: COMMAND PROCEDURES

.

THIS PAGE LEFT BLANK INTENTIONALLY.

6-12

7
Nonsequential

Command
Processing

7-1

Section 7: NONSEQUENTIAL COMMAND PROCESSING

$7.1 GENERAL

Command records are normally processed in strict forward sequence. Within a command
procedure, however, it is possible to specify nonsequential processing with the help of
branching and looping directives:

0

0

0

Unconditional branching is provided by JUMP and RETURN directives.
Conditional branching is provided by IF directives.
Looping is provided by DO and WHILE directives.

These constructions work only within a command procedure. A reader familiar with pro-
gramming language implementation will immediately understand why: forward or back-
ward control transfers require that the target command be predefined, and its location
identified. This implies a “compiling” process which is only available in CLIP as part of
the command procedure capability described in 56.

The implementation of control transfers is made with the help of explicit or implicit
labels. The following section describes the explicit kind.

REMARK 7.1

In pre- 1984 versions of CLIP, CYCLE directive provided a primitive implementation (historically
the first, back in 1976) of looping. That role is now assumed by the DO directive, which is closer
in appearance to the FORTRAN DO loop and hence easier to understand.

57.2 LABELS

A label line identifies a location within a procedure. This label can be referenced as a
target in control transfer directives such as JUMP and DO.

A label line is constructed simply as

: Label

where Label is the label name. The name is a character string of arbitrary length, but the
first eight characters must be unique. The name is prefixed by a colon. The first character
of‘ user-defined labels must be a letter. Internal labels generated by the procedure compiler
begin with reserved characters.

A Iahcl mav appear free, f i r 4 t - l . h i t anv tvut that fnllnwq nn the same line is ignnrcd.
When control transfers to a label, the nezt procedure line is read.

REMARK 7.2

During procedure “compilation” label lines are physically eliminated. The associated information
is collected in a table stored at the start of the callable procedure element.

.

REMARK 7.3

Explicit labels were more prominently used in the old versions of CLIP, which did not feature
labelled structured constructs such as IF-THEN-ELSE and WHILE-DO.

7-2

~~

57.3 LOOPING

EXAMPLE 7.1
Here is a label construction:

: ASK-USER
SET VALUE = "Please enter correct value:"
(more commands)
*JUMP : ASK-USER

If control transfers to label ASK-USER, the SET VALUE command is read next.

.
57.3 LOOPING

Looping can be specified through the DO and WHILE directives. The first one mimics the
FORTRAN DO statement and may involve an explicit label. The second form is block
structured and does not use an explicit label. Both forms test a t the top.

The DO Loop

The DO directive purportedly resembles the FORTRAN DO statement. Cycling is con-
trolled by a local integer macrosymbol that is created and updated its the loop is executed.
Use of an explicit label to mark the DO range is optional. The form with an explicit label
is

I I *DO :Label Mucro-name = t l , i 2 , [i3 J

:La bel

where Mucro-name is the name of a local macrosymbol, and il, 22 and i3 denote integers
or integer expressions. If i3 is omitted, the value 1 is assumed. The maximum level to
which DO loops may be nested is 5.

ENDDO directive:
The label may be omitted, in which case the loop body must be terminated by an

I *ENDDO I
3

In this case the procedure compiler generates appropriate internal labels.
Here's a specific example:

*DO :PRINLOOP $N = 1.10

: PRINLOOP
PRINT REC 1,55,VEL.<$N>

7- 3

Section 7: NONSEQUENTIAL COMMAND PROCESSING

The example loop is controlled by macrosymbol $N. This is a local macrosymbol because
its name begins with a dollar sign; it is invisible outside the procedure. The body of t,lie
loop, which consists here of a single command, is executed ten times. In the first pass $N
will have a value of 1, the second time the value will be 2, and so on. This value may be
materialized within the body of the loop as illustrated above.

.

The WHILE DO Block

A WHILE DO block tests cycling on a logical rather than arithmetic expression. No explicit
labels are permitted. The general form is

I 1 *WHILE logical-expression /DO

(body)

*ENDWHILE

where both the WHILE and ENDWHILE directives must be on a line by themselves. Testing
occurs at the top, i .e . , at the WHILE directive. If the logical expression is false, control
passes to the command that follows the ENDWHILE terminator. Otherwise the body of the
loop is traversed and control jumps back to the WHILE line for another test.

This form is converted to logical IFs and unconditional jumps during the procedure
compilation. Two internal labels are generated in the process.

$7.4 CONDITIONAL BRANCHING

Conditional branching is provided by the IF directive. Previous CLIP versions offered
only an “arithmetic IF” type of directive. The present version offers a “logical IF” with
an explicit label and a block-structured IF-THEN-ELSE construction that avoids explicit
labels.

The Labelled IF Directive

Conditional control transfer to a specific label may be specified by
This is analogous to the LOGICAL IF statement of FORTRAN.

The general format is

the labelled IF directive.

I *IF IogicaLexpression c : LUMI I
The logical-ezpresszon is in fact an integer that may take on two values: 1 for TRUE or 0
for FALSE. Control transfers to the line that follows :Label if the value is TRUE; otherwise
it continues on to the next line. For example:

*IF 1 :THERE

7-4

f

$7.4 CONDITIONAL BRANCHING

control passes to the line that follows label THERE. In practice a bare statement like t,his
makes little sense; more often than not, the 1 or 0 is the prodrict of a logical mncro
evaluation.

The BLOCK IF Construction

CLIP now offers a “structured” IF directive through which a construction similar to the
IF-THEN-ELSE construction of FORTRAN 77 can be specified. Use of this construction
eliminates the use of explicit labels and results in more readable procedures. The general
form is

*IF logical-expression1 /THEN

* ELSE1 F logical- expression2 /THEN
(commands)

(commands)
. . .

(additional ELSEIFs)

*ELSE

*ENDIF

. . .

(c ommands’)

The Block IF construction is initiated by an IF directive. The form of this directive is
similar to that of the labelled IF directive described above, but it has a THEN qualifier
instead of a label. If the logical expression given in the directive text evaluates to TRUE,
the following commands are processed and then control transfers to the command that
follow the ENDIF directive.

One or more ELSEIF directives (or none) may follow. The logic for processing the

An ELSE directive may appear before the ENDIF directive. Commands between the

The ENDIF directive terminates the Block IF construction and is mandatory. On the

commands that follow an ELSEIF directive is similar to that followed in FORTRAN 77.

ELSE and ENDIF are processed if all previous tests are not verified.

other hand, the ELSEIF and ELSE parts may be omitted.

7--5

Section 7: NONSEQUENTIAL COMMAND PROCESSING

.

THIS PAGE LEFT BLANK INTENTIONALLY.

7-6

Global Data
Manager
Interface

8-1

Sectlon 8: GLOBAL DATA MANAGER INTERFACE

$8.1 GAL DIRECTIVES

A set of directives available in the full CLIP version gives you the ability for interacting
with the Global Data Manager GAL. These are collectively known a8 GAL directioea and
are listed in Table 8.1. The set of GAL directives forms the GAL Interface.

The interface allows the user of NICE Processors to perform global data management
functions at the command level, without having to learn the calling sequences available at
the FORTRAN level.

The present Section covers interface operations of a general variety, such as opening
and closing data libraries, listing the Table of Contents, etc. The section does not dis-
cuss record-transfer operations which involve exchanging data between a GAL library and
memory; these are covered under the Local Data Manager Interface.

4

8-2

-~ -~

I

$8.1 GAL DIRECTIVES

Table 8.1. GAL Directives

Directive Database Multiple Applicable to
Name Id Level Occurrences? Library Forms

ADD TEXTDATASET

ADD TEXT-GROUP

CLOSE

COPY DATASET

COPY RECORD

DELETE DATASET

DELETE RECORD

ENABLE

FIND LIBRARY

FIND LIBRARIES

FIND DATASET

FIND DATASETS

FIND RECORD

FIND RECORD-KEY

FLUB

GET DATASET

GET TEXT-DATASET

GET TEXT-GROUP

Dataset

Record

Library

Dataset

Record

Dataset

Record

Dataset

Lib tar y

Library

Dataset

Dataset

Record

Record

Library

Dataset

Dataset

Dataset

No

No

Yes

Yes

Yes

Yes

Yes

Yes

N o

Yes

No

Yes

No

N O

Yes

No

Yes

Yes

DAL, GAL80

GAL82

All

All

GAL82

All

GAL82

All

All

All

All

All

DAL, GAL80

GAL82

All

All

DAL, GAL80

GAL82

8-3

Section 8: GLOBAL DATA MANAGER INTERFACE

Table 8. I . GAL Dircwtives (Concluded)

__-c__-_ -__

Directive Database Multiple Applicable to
Name Id Level Occurrences? Library Forms

I

I

LIST TEXT-DATASET

LIST TEXT-CROUP

LOCK

OPEN

PACK

PUT DATASET

PUT TEXT-DATASET

PUT TEXT-GROUP

PRINT RECORD

PRINT RAT

PRINT TOC

RENAME DATASET

RENAME RECORD

TYPE TEXT-DATASET

TYPE TEXT GROUP
- ___ -

Datnset

Record

Dat aset

Library

Library

Dataset

Dat ase t

Record

Record

Record

Dut as e 1

Dut as e t

Record

Dataset

NENWd

Yes

Yes

No

No

No

No

No

N O

Yes

1 'e s

Yes

Yes

Yes

Ires

I 'e s
-

DAL, GAL80

GAL82

GAL80,GAL82

All

All

All

DAL, GAL80

C: A L82

All

GAL82

All

All

GAL82

DAL, GAL80

G A L82
__ .- __ - ._ - _

$8.2 DBM TERMINOLOGY

Readers already faniiliar with GAL netd r i o t cfwell on t,he following niat,erial. which is

I included for completeness.

~ ~~~

$8.3 LIBRARIES

‘I

Hierarchy

An GAL database consists of one or more data libraries. Data libraries reside on system
files, These files are accessed by GAL through the 1 / 0 Manager DMGASP.

The information within a data library is hierarchically organized into datasets and
records. A dataset is a named collection of records. Records contain the actual data used
by applications programs.

Library Forms

GAL supports three data library formats, known as DAL, GAL80 and GAL82.

DAL. The DAL library form is used by the structural analysis programs SPAR and EAL,
and the DALPRO utility processor. Most DAL datasets are formed by equal-size records,
which must be stored contiguously. Records are identified by index.

GAL80. This generalizes the DAL format in the sense that datasets are formed by hetero-
geneous records, which must nonetheless be stored contiguously. Records are identified by
index.

GAL82 Datasets are formed by collections of homogeneous records which may reside
anywhere within the library file. Records are identified by name. A record name consists
of a key and a cycle. Records of identical size and data type may be logically bound to
form a Record Group.

Positional vs. Nominal

Datasets in DAL and GAL80 libraries are called positional because records are identified
by their position within the dataset.

Dataset in GAL82 libraries are called nominal because records are identified by name
instead of position.

Because DAL and GAL80 libraries can only hold positional datasets, the term posi-
tional library is commonly used to collectively refer to both forms. Similarly, GAL82 forms
are called nominal libraries. Successors to GAL82 will also be of nominal type.

Identifying Database Entities

Directives that access the glohnl database usiially need to refer to entities siich as libraries,
datasets, records and even portions of records. CLIP has a consistent way of referring
to such things through a set of syntax rules. These rules are explained in the following
subsections. We start with the simplest rules and work our way up to the most complex
ones.

$8.3 LIBRARIES

Accessing a Library

Sectlon 8: GLOBAL DATA MANAGER INTERFACE

Before any library can be used by a Processor, it must be explicit.ly opened. For libraries
that reside on permanent files, the open operation links the file name to R Logical Device
Index (LDI), which is an integer in the range 1 to 16. For example:

V

*OPEN/R 14, ANALYSIS.LIB

is a directive that opens (in read-only mode) an existing library that resides in file
ANALYSIS.LIB (a VAX file name) and connects it to Logical Device Index 14. All subse-
quent references to the library are through the LDI and not through the file name. This
rule is appropriate because some libraries do not have names; see Remarks 8.2 and 8.3
below.

An open library is said to be active. You may get a list of active libraries through the
SHOW LIBRARIES directive.

Once you are through with a library you may close it by issuing a CLOSE directive. A
closed library that resides on a permanent file reverts to the inactive status and may not
be accessed by the Processor. If the library resided on a scratch file, it disappears when it
is closed.

REMARK 8.1

The LDI plays a role analogous to that of a logical unit in FORTRAN I/O, in the sense of being
a pointer to a file. However, an LDI is not a logical unit.

REMARK 8.2

Libraries may reside on nameless files (in the sense of having no external name). This happens
if you use a scratch file to temporarily store a library created with FORTRAN 1/0, because the
FORTRAN standard says that scratch files have no names. (Scratch files created with Block 1/0
may have names under some operating systems). But all libraries have an LDI.

REMARK 8.3

Most exotic are “core libraries.” These reside on a pseudo-file created in blank common by the
1/0 Manager DMGASP. As in the previous case, core libraries have an LDI but no file name.

Library Specification

Some GAL directives operate at the library level and so they need only a library identifier.
You have seen an example (the OPEN directive) earlier; here are two more:

*PACK 14
*CLOSE 14

The PACK directive compresses the library connected to Logical Device Index 14. The
CLOSE directive performs a close-library operation as discussed above. For these directives
it is sufficient to type the LDI as a positive integer.

A Special Convention

8-6

58.4 DATASETS

7

For all library directives but OPEN, CLIP will also let you type a 0 instead of the actual
LDI to mean "the active library with t h e highest LDI". For example, mppow that you
have two active libraries assigned to LDIs 3 and 8. Then

*PACK 0
means PACK 8. (If no libraries are open you will get an error diagnostic.) Omitting the
LDI is the same as typing a zero.

$8.4 DATASETS
Identification

Datasets are identified by name or (once in the library) by sequence number. The naming
conventions are discussed in detail in the GAL Reference Manual but in essence you identify
the dataset by two names called mainkey and key extension, respectively, followed by
up to three integers called cycle numbers. Any component except the mainkey may be
omitted; an omitted extension is assumed blank whereas omitted cycles are assumed zero.
Components are separated by periods. Examples:

MATRIX
STIFFNESS.MATRIX
DISPLACEMENT.VECTOR.l.3.101
ALUM-7076 . . . 3

The sequence number of a dataset is the ordinal of its occurrence in the data library. Once
assigned, this number cannot change except as a result of a PACK operation.

The identification by name is more general and mnemonic. It also allows the use
of masking characters and cycle-range specifications to do operations on several datasets
related by name. Using names has the disadvantage that a search of the library Table of
Contents (TOC) is required, which can be expensive if a library contains many datasets.

Writing Dataset Directives

To specify a dataset subject of a directive, you write the library LDI, then a comma, and
then the dataset name or sequence number. Examples:

*TOC 4,FORWARD.STEP
*GET TEXT-DATASET 0UTPUT.FIL = 6.36

In the TOC directive, the dataset is FORWARD.STEP, which resides in library 4. In the GET
directive, the dataset is located at sequence number 35 of library 6.

Multiple Dataset Specification

Many GAL directives let you apply an operation to many datasets. These datasets may
be identified by name masking, or by sequenw range. Examples:

v

8-7

Sectlon 8: GLOBAL DATA MANAGER INTERFACE

*TOC 4,FORWARD
*TOC 4,45:69

S*

The first example says that the TOC operation is to apply to all datasets in library 4 whose
mainkey is FORWARD and whose key extension begins with S. The second example specifies
the sequence number range 45 through 59 (inclusive).

Relative Sequence Specification

You may replace a sequence number by an explicit 0 to mean the last sequence number.
Similarly, -1 means the penultimate dataset, and so on. Examples:

*ENABLE 7.0
*DELETE 12,-9:0
*COPY 0 = 1.42:O

Translation: enable the last dataset in library 7, delete the last 10 datasets in library 12,
and copy datasets 42 through last in library 1 to the library with the highest LDI.

REMARK 8.4

The relative specification is experimental and may be removed from future CLIP versions if it is
not found particularly useful.

$8.5 RECORDS

Some GAL directives let you do operations at the record level; for example printing record
contents. Only specifications for GAL82 libraries, which use named records, are discussed
here. Specification for indexed records in DAL or GAL80 libraries (which are becoming
obsolescent) are summarized in Table 8.2.

Named Record Identification

An individual record is identified by a key and a number called a cycle. If the cycle is
zero it may be omitted. If both name components are given they must be separated by a
period. Examples:

FLUIDMASS
SIGMA-XX.45

Records with the same key and consecutive cycle numbers are collectively referred to as
a Record Group. Each Group record has identical length and type. A Text Group is a
special Record Group the records of which are card images. A Record Group subset may
be specified by giving the key and a cycle range, as in

VELOCITIES.31:66

Writing Record Directives

A named record specification requires three pieces of data: owner library, owner dataset
and record name. You begin by typing the first two pieces as in the case of a dataset
specification; then you type another comma and then the record name. Example:

8-8

s8.6 SUBRECORDS

c

*PRINT RECORD 6,STIFFNESS.MATRIX.DETERMINANT
*PRINT RECORD 6.79 ,DETERMINANT

In the first line the PRINT RECORD directive applies to record DETERMINANT of dataset
STIFFNESS.MATRIX in library 6. The second form uses a dataset sequence number and is
equivalent to the first one if 79 happens to be the sequence number of STIFFNESS. MATRIX.

Multiple Dataset Specification

Some record-level directives allow you to specify multiple datasets linked by name masking
or dataaet sequence range. Examples:

PRINT RECORD 6,ST,DETERMINANT
*PRINT RECORD 6,23:79,DETERMINANT

Multiple Record Specification

Some record-level directives, notably PRINT RECORD, may apply to several records linked
key masking or cycle specifications. Examples:

PRINT RECORD 6.79. D
PRINT RECORD 6,79,
*PRINT RECORD 6,79.XYZ.31:46

The first prints all records under STIFFNESS.MATRIX that begin with D; the second one
prints all named records; the last one prints records XYZ. 31 through XYZ .46 (inclusive) in
Record Group XYZ.

Both multiple-dataset and multiple-record specifications may be combined, as in

PRINT RECORD 6,,*
which prints all records in nominal library 6.

$8.6 SUBRECORDS

A few DBM directives let you access parts of records. To specify portion of a record you
enclose the data item range, written as nl : n2 within squared brackets. Example:

*WCET RECEIVER = 5,13.TRAtISFORM.6[3: 121

accesses items 3 through 12 of record TRANSFORM.6 of dataset 13 in library 5. (The WGET
directive, by the way, belongs to the Local Data Manager lnterface and thus is not covered
here.)

And this is as complicated as it gets.

8 -9

~

Section 8: GLOBAL DATA MANAGER INTERFACE

Table 8.2. Database Entity Identifiers

V

Ezplanat ion __- - - Entity Identifier

Library ldi

Single dataset Idi,Dataset-name

Single dataset ldi,dsn

Several dat asets ldi, Dataset-name

Several datasets ldi,dsnl :dsnz

ldi is the Logical Device Index.
If ldi=O, the dataset with high-
est LDI is assumed except for
the OPEN directive.

Name of dataset

dsn is the dataset sequence num-
ber. If dsn is zero, the last
dataset is assumed. If d m is
negative and equal to -n, the
dataset located at n positions
from the last one is assumed.

Dataset-name contains masking
specifications

Datasets with sequence number
dsnl to dsnz inclusive. See
above for treatment of zero or
negative numbers.

Indexed record ldi,dsn,irec irec: record index

Indexed record ldi,Dataset-name, irec irec: record index

Named record ldi,dsn, Record-name Record-name is record name

Named record Idi,Dataset-name,Record-name Record-name is record name

Record portion ldi,dsn, Record nntnc[n 1 : n p ; Record iteins nl thrairgh nz in-
clusive. dsn may be replaced by
a dataset name.

$8.7 MACROSYMBOLS AS INFORMATION CARRIERS

Certain DBM directives allow you to do database queries; the most important one being
FIND. For applications like writing command procedures it is convenient to have a mecha-
nism for storing the result of such queries as values that can be subsequently used in other

8-10

j8.7 MACROSYMBOLS AS INFORMATION CARRIERS

commands. This can be achieved with the help of macrosymbols that are created as a
byproduct of the execution of the directive. Consider

*OPEN/NEW INPUT-LIB /LDI=INPUT
4

The OPEN directive does not specify the LDI of the library 1NPUT.LIB. Instead the LDI
is picked by GAL; let’s say it is 3. Integer macrosymbol INPUT is defined, and assigned
the value 3. A subsequent directive or ordinary command can make use of this value by
materializing the macrosymbol in the usual fashion. For example:

*REMARK 1NPUT.LIB created and assigned t o LDI=CINPUT>
*TOC <INPUT> ; *CLOSE <INPUT>

8-1 1

Sectlon 8: GLOBAL DATA MANAGER INTERFACE

THIS PAGE LEFT BLANK INTENTIONALLY.

8-12

Local Data
Manager
Interface

~

Section 9: LOCAL DATA MANAGER INTERFACE

The Workpool area is subdivided into workrecords. The allocation is performed aa a
one-way stack.

$9.1 GENERAL DESCRIPTION

I

Operational Status

The Workpool Manager and directive interface to it is presently on experimental status.
Changes may occur without notice. It is expected, however, that the final form of the
manager and interface will be fairly close to that presented here.

Workrecords

A workrecord is a contiguous area of the Workpool identified by name. A workrecord name
has the same structure of a nominal record name: a record key of up to 12 characters
optionally followed by a cycle number. The first character of the key must be a letter. If
the cycle number is omitted, zero is assumed. The following are legal workrecord names:

I ZETA COORDINATES.66 TITLE.8

I
A workrecord has three basic attributes: a data type, its logical size, and its location
within the workpool. These and other attributes are listed in Table 9.1.

There are two types o f workrecords supported by the Workpool Manager:

1. A backed workrecord is linked to a nominal data library through backing information
(see Table 9.1). A backed workrecord is created by an open operation, a t which time

I an old or new status is specified.

,

2. An unbucked or scratch workrecord does not have backing information. An unbacked
workrecord is creatcd by an allocate operation. These workrecords are normally used
to hold temporary data.

9--2


~~~ 
~ 

$9.2 WORKPOOL OPERATIONS 

Workgroups 

Workrecords with the same key may be grouped over a cycle range to form workgroups. 
All records of a workgroup have the same size and data type. A workgroup is identified 
by giving the cycle range after the key. Example: 

ALPHA.l:20 

ALPHA is a 20-record workgroup. 

library, but there is an important difference: no cycle gaps are permitted. 
The concept of workgroup is similar to that of Record Group in a nominal (GAL82) 

$9.2 WORKPOOL OPERATIONS 

The main operations that can be performed on workrecords are listed next. 

Allocate 

The allocate operation sets aside space in the Workpool to store a workrecord or workgroup. 
Protection keywords are installed before and after the allocation. The record key is entered 
in the macrosymbol table, and its attributes become the value of the macrosymbol. For 
an unbacked workrecord, the allocate and open operation are identical. For a backed 
workrecord, the allocate operation is a subset of the open operation. 

Open 

The open operation applies to backed records and combines allocation with backup and/or 
initialization. The workrecord or workgroup is given space in the Workpool through an 
allocate operation. If the status is old, the contents are read from the backing library and 
the modified flag is cleared. If the status is new, the space is initialized (to zero if data 
type is numeric, to blank if character) and the modified flag is set. 

Change Size 

The size of a workrecord may be expanded or reduced at  any time. A side effect of the 
size change is that the Workpool locations of other workrecords are changed. 

Mark as Modified 

A backed workrecord or workgroup may be flagged as modified so as to force its contents 
to be written to the backing data library on a flush or close operation. An opened-new 
operation or a change-size operation forces the modification flag to be set. 

Flush 

A backed modified workrecord or workgroup marked as modified is written to the backing 
data library, and the modified flag cleared. The allocation is not altered. 

9-3 



Sectlon 9: LOCAL DATA MANAGER INTERFACE 

Deallocate 

The storage allocation of a workrecord or workgroup is released to the Workpool. Locations 
of other workrecords may change as a result of this operation. 

Close 

For backed workrecords, the close operation combines flushing and deallocation. For un- 
backed (scratch) workrecords, close and deallocate are equivalent operations. 

9-4 



~~ 

59.2 WORKPOOL OPERATIONS 

Table 9.1. Workrecord Attributes 
i 

Attribute Explanation 

Name 

Key 

A record key/cycle pair separated by a dot; a zero cycle may be 
omitted . 
A string of 1 to 16 characters; the first one must be a letter. 

Cycle An integer in the range 0 to 999999. 

Logical size Record length in logical units (also called items) 

Physical size Number of machine words needed to store the logical size. 

Type A one letter type identifier. See Table 63.1. 

Pool location The word address of the first record itern in the Workpool. 

Modification flag 

Backing library 

A flag that indicates whether a backed record has been modified since 
the last backup operation. 

Database information .(device index, dataset, record) that links a 
workrecord or workgroup to the database for backup purposes. 

9--5 



Sectlon 9: LOCAL DATA MANAGER INTERFACE 

THIS PAGE LEFT BLANK INTENTIONALLY. 

0 -6 



~~~ ~ 

510.2 PROCESSOR NETWORKS

a trivial MCP that doesn’t do much except looping:

*procedure super (nruns-2)
*do $n = 1. [nrunsl

*rem I am i n s i d e Pi. The value of $n is <$n>
*run P2
*rem I am i n s i d e P2. The value of $n is <$n>
*stop

*enddo
*end

For demonstration purposes P1 and P2 may be “do nothing” 4-line processors such as

program Pi
1000 c a l l CLREAD (’ PI> ’, * ’1

go to 1000
end

and

program P2
1000 c a l l CLREAD (’ P2> ’, ’ ’1

go t o 1000
end

Compile Pi and P2 and link to the NICE library to make executables Pi. EXE and P2. EXE.
Now run Pi and compile the source file of procedure SUPER by using an *ADD command.
Upon typing

* c a l l super

you should see SuperCLIP in action:

I am i n s i d e Pi. The value of $n is 1
I am i n s i d e P2. The value of $n is 1
I am i n s i d e Pi. The value of $n is 2
I am i n s i d e P2. The value of $n is 2

State Preservation

The key point of the example is that the value of macrosymbol $N is known to 60th Pi and
P2, just as if they were the same program. Since Pi and P2 are independent programs, a
save/restore process has to take place transparently to the user.

It is this state preservation that makes all the difference. For example, if you manually
stop Pi and start P2, the latter has no way of knowing that macrosymbol $N exists and
what its value is, unless you explicitly insert a DEFINE. Similarly, P2 wouldn’t know what
the value of the procedure argument NRUNS is, and there is no simple way to specify that.

10-3

Section 10: SUPERCLIP

In production-level networks there may be many Processors working together, and
hundreds of shared quantities: macrosymbols, procedure arguments, lahcls, tlic command
source stack, etc. Manually saving and restoring this mass of data makes little sense. If
there is a way, let the machine do it.

Machine Dependency

Unfortunately the idea of having a program start up another program is foreign to FOR-
TRAN (as well as to most programming languages). The feasibility of using SuperCLIP
is directly related to the operating system used.

1. Unfeasible. Either the concept is foreign to the O/S, or the necessary hooks are not
provided. Example: CRAY/COS.

Barely Feasible. A simple mechanism is provided that works although it lacks embel-
lishments such as parameter passing and synchronization. Example: the VAX/VMS
implementation described in 510.3, which uses LIB$RUN-PROCESS.

Feasible with Enhancements. This includes systems like Unix in which concurrent
process execution and synchronization were basic elements of the design.

2.

3.

REMARK 10.1

Some systems offer more than one way of implementing SuperCLIP. For example, on V A X / V M S
you can have a process start another process, or you can have a process “spawn” subordinate
subprocesses. The first implementation (1981) of SuperCLIP on V A X / V M S in fact made use
of the “spawn” technique. This was changed in the present implementation because spawning
may be disallowed (as system-generation option) on some VAX systems, whereas the first form is
universal. The subprocess technique has the advantage tha t one can return to the parent process
at exactly the same point at which the subprocess was spawned.

$10.3 VAX/VMS IMPLEMENTATION

Implementation of the RUN directive

When you enter a RUN directive, CLIP enters the SuperCLIP subsystem, which performs
the following steps:

1. Push PNS. The name of the Processor specified in the RUN directive (or! more exactly,
the name of its executable file) is pushed onto a data structure known as the Process
Name Stack (PNS).

2. State Save. SuperCLIP opens a new, PRU addressable, Block 1/0 file by calling the
1 / 0 Manager DMGASP. The name of the file is ZZZZZZZ. DAT on VMS and ZZZZZZZ
on UNIX. All data structures that govern the state of CLIP are block copied to that
file. These structures include the Decoded Item Table, Macrosymbol Table, Command
Source Stack, Process Name Stack, control characters, logical unit table, and list of
active data libraries. All open libraries are closed.

10-4

5 10.3 VAX/ V M S I M P L E M EN T A T ION

3.

4.

5 .

Process Switch. Call the VAX/VMS operating system function LIB$RWN. PROGRAM or
call the UNIX system function execlp to stop thc current process and start the* targpt
process.

CLIP Booting. The target Processor starts. On first entry to CLIP, a "booting"
routine is called. One key duty of this routine is to ask: is this Processor run the
result of SuperCLIP? Since VAX/VMS does not tell, an indirect query procedure is
followed. The existence of the state save file in the current directory (ZZZZZZZ. DAT
or ZZZZZZZ) is checked. If the file exists, SuperCLIP is called.

State Restore. The state save file (ZZZZZZZ.DAT or ZZZZZZZ) is read to restore the
CLIP data structures. Non-scratch libraries that were open in the parent processor
are re-opened. The Command Source Stack is also reconstructed so it has the same
array of open files, and script files are read forward to restore them to the original
position. The state save file is closed with delete option, and so it disappears.

REMARK 10.2

Many entities foreign to CLIP are not restored. These include: the memory-resident data other
than the data structures listed in step 3, scratch data libraries, logical devices that are not data
libraries, and FORTRAN files not part of the command source stack. Basically the automatic
restore is concerned with CLIP operation.

REMARK 10.3

There may be a lag between the time a Processor starts and the first entry to CLIP. Since the
state restore takes place only upon the latter, some unusual things may happen if the lag sets
up parameters that may be overriden by the state restore. It is, therefore, a good idea to make
Processors call CLIP as soon as possible in the main program if they may become part of the
network. Just calling CLPUT with an empty message would suffice.

REMARK 10.4

If the RUN directive fails because the target Processor name is incorrect, the state save file will
be left sitting in your directory. Please delete such a file if you see one. If you innocently start
a Processor with a $RUN and the Processor finds that file there, it will think it has been started
using SuperCLIP and you may see deviant behavior. If you run across such behavior, abort the
run and check the current directory to see if the state save file is present.

Implementation of the STOP directive

A STOP directive is implemented very much like a RUll directive. It is sufficient to note the
differences:

1. Pop PNS. The name of the parent Processor is extracted from Process Name Stack
(PNS), which is popped. If the stack is empty, take a normal run termination.

2-5 Same as for the RUN directive.

10-5

Sectlon 10: SUPERCLIP

THIS PAGE LEFT BLANK INTENTIONALLY.

c

10-6

11
D i rec t ive

Classification

11- 1

Section 11: DIRECTIVE CLASSIFICATION

811.1 CLASSIFICATION

All directives are alphabetically described in Sections 12 through 74. The present Section
classifies directives according to their availability in the present version of CLIP.
1. Core Directives are those impiemented as part of kernel capabilities and consequently

are not dependent on the availability of CLIP subsystems.
Subsystem Directives are part of non-kernel modules such as Macrosymbol and Com-
mand Procedure. Availability of these directives depends on which subsystems are
extracted from the Master Source Code. For example, the SuperCLIP subsystem is
only implemented on VAX/VMS and consequently the RUN and STOP directives are
not available under other operating systems.

2.

511.2 CORE DIRECTIVES

The following directives listed in Table 11.1 are part of the CLIP "kernel".

11-2

511.2 CORE DIRECTIVES

Table 11.1 Core Directives

Name Modifier or Function Stat us
Subclass

ABORT

ADD

DUMP

ENDLOG

EOF

EOL

FCLOSE

FOPEN

GENERATE

HELP

LIST

LOG

REMARK

Triggers an abnormal run termina-
tion

Redirects input to script file File

Print the contents of any DMGASP
file

Terminates command logging

Terminates commarid source

Inserts end-of-line in dataline collec-
tor

Closes FORTRAN unit

Open card-image FORTRAN unit

Generates next comrnand(s) by in-
cremen tation

Lists topic-qualified segments of
NICE help file

Lists card-image file on print unit File

Initiates command transcription to
log file

Print remark line

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operat ion a1

Operational

Operational

Operational

Operational

11-3

Sectlon 11: DIRECTIVE CLASSIFICATION

Table If . I Core Directives (Concluded)

Name Modifier or Function
Subclass

St at us

SET

SET
SET
SET
SET
SET
SET
SET
SET

SET
SET

SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW
SHOW

SHOW
SHOW

TYPE

CHARACTER Changes a volatile control character

CPU -T IME
ECHO
HELP
MODE
RUN
TERMINAL
UNIT
VIDEO

WIDTH
WINDOW

CHARACTERS
css
CPU -T IME
DEC
ECHO
HELP
MODES
RUN
TERMINAL
UNITS
VIDEO

WIDTHS
WINDOWS

Sets internal CPU time stopwatch
Seta dataline echo options
Sets current help file
Sets command processing modes
Sets run execution environment
Sets terminal environment
Sets logical unit number
Sets CRT-display control parame-
ters
Sets line input or print width
Sets CRT windowing parameters

Shows volatile control characters
Shows Command Source Stack
Show elapsed CPU time
Shows Decoded Item Table
Shows dataline echo options
Shows current help file
Shows command processing modes
Shows run execution environment
Shows terminal environment
Shows logical units
Shows CRT-display control param-
eters
Shows line input and print widblis
Shows CRT windowing parameters

File Lists file on terminal

0 pera t ion a1

Operational
Operational
Operational
Operational
Operational
Not implemented
Operational
Not implemented

Operational
Not implemented

Operational
Operational
Operational
Operat ion a1
Not implemented
Operational
0 perat ional
Operational
Not implemented
Operational
Not implemented

Operational
Not implemented

Operational

c

11 -4

$11.4 COMMAND PROCEDURE DIRECTIVES

$11.3 MACROSYMBOL DIRECTIVES
The following directives listed in Table 11.2 are available as part of the Macrosymbol
subsystem described in $4.

Table 11.2 Macrosymbol Directives

Name Modifier or Function
Subclass

Status

ALIAS Defines an abbreviation for a textstring Not implemented

DEFINE

CAL2MAC

MAC2CAL

Defines or redefines a macrosymbol,
or macrosymbol array

Defines or redefines a macrosymbol
or macrosymbol array with values
obtained from a GAL dataset

Writes values of a macrosymbol Operational
or macrosymbol array into a GAL
dataset

Operational

Operational

SHOW MACROS Shows defined macrosymbols Operational

UNDEFINE Deletes macrosymbol (s) Operational

Note: GAL2MAC and MAC2GAL also require the Global Data Manager (GAL) Inter-
face subsystem.

11-5

Sectlon 11: DIRECTIVE CLASSIFICATION

$11.4 COMMAND PROCEDURE DIRECTIVES

The following directives listed in Table 11.3 are available as part of the Command Proce-
dure subsystem described in 55. Directives for nonsequential command processing, which
can only be used in procedures, were described in $6.

Table 11.3 Command Procedure Directives

Name Modifier or Function st at us
Subclass

CALL

ELSE

ELSEIF

END

ENDDO

ENDIF

ENDWHILE

IF

IF

JUMP

Redirects input to a callable proce-
dure element

Introduces "else" subblock in
IF-THEW-ELSE block

Introduces "else if" subblock in
IF-THEN -ELSE block

Terminates definition of command
procedure

Terminates a label-less DO block

Terminates an IF-THEN-ELSE block.

Terminates a WHILE-DO block.

Labeled Logically tests and transfers to label

Label-less Introduces an IF-THEN-ELSE block

Transfers control to specified label

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operational

Operationa.1

11-6

-

$11.4 COMMAND PROCEDURE DIRECTIVES

Table 11.3 Command Procedure Directives (Concluded)

Name Modifier or Function Status
Subclass --

PROCEDURE

RETURN

SET

SET

SHOW

SHOW

WHILE

Initiates definition of command pro-
cedure

Forces exit from command proce-
dure

Operational

Operational

ARGUMENT Sets procedure argument replace- Not implemented

PLIB Sets procedure library for residence Operational
ment text

of callable procedure elements

ARGUMENT Show procedure argument replace- Operational

PLIB Shows procedure library for resi- Operational
ment text

dence of callable procedure elements

Introduces a WHILE-DO block Operational

11-1

Sect Ion 1 1 : D I R E C T I V E C LASS I F I CAT ION

511.5 GAL DIRECTIVES

The following directives listed in Table 11.4 are available as part of the Global Data
Manager (GAL) Interface subsystem described in $7.

Table 11.4 GAL Directives

Name Modifier or Function
Subclass

Status

ADD

ADD

CLOSE

COPY

COPY

DELETE
DELETE

ENABLE

FIND

FIND

FIND
FIND

FIND

FIND

FLUB

TEXT-DATASET Redirects input to Text Dataset Operational

TEXT-GROUP

DATASET

RECORD

DATASET
RECORD

DATASET

DATASETS

LIBRARY
LIBRARIES

RECORD

RECORD-KEY

script
Redirects input to Text Group Operational
script

Closes data library(ies) Operational

Copies and optionally renames Operational
dataset(s) from a library to another

Copies and optionally record(s) from
a nominal dataset to another

Delete dataset(s) Operational
Delete named record(s) Experimental

Experimental

Enable dataset(s) Operational

Returns information on individual Experimental
dataset
Returns information on several datasets Experimental

Returns information on library
Returns information on all libraries

Experiment a1
Experimental

Returns information on indexed Experimental
record
Returns information on named record Experimental
key
Flushes buffers of data library(ies) Operational

Notes: FIND also requires Macrosymbol facility.

11-8

§11.5 GAL DIRECTIVES

Table 11.4 GAL Directives (Concluded) -
Name Modifier or Function St at us

Subclass

GET TEXT-DATASET Extracts Text Dataset to file Operational
GET TEXT-CROUP Extracts Text Group to file Operational

LIST TEXT-DATASET Lists Text Dataset on print file Operational
LIST TEXT-CROUP Lists Text Group on print file Operational

LOAD Internalizes record(s) from text file Operational

LOCK Sets dataset lock code Not implemented

MAC2GAL

OPEN

Writes a macrosymbol value or Val- 0 per at ion ai
ues to a nominal GAL dataset

Opens data library Operational

PRINT DATASET Prints all dataset records Not implemented
PRINT RAT Prints Record Access Table of dataset Operational

PRINT RECORD Prints record contents Operational
PRINT TOC Prints Dataset Table of library Operational

PUT TEXT-DATASET Inserts Text Dataset from card- Operational

PUT TEXT-GROUP Inserts Text Group from card-image Operational
image file

file

RENAME DATASET Renames dataset(s)
RENAME RECORD Renames record(s)

Operational
Experimental

SET ERR Sets Error processing options Not, implemented

SHOW ETS Shows Error Trace Stack Experimental

TYPE TEXT..DATASET Lists Text Dataset, on terminal 0 per a t ional
TYPE TEXT-GROUP Lists Text Group on terminal operational

Externalizes record(s) to text file Not implemented - UNLOAD

Notes: OPEN requires Macrosymbol facility for qualifier LDI.

11-0

Sectlon 11: DIRECTIVE CLASSIFICATION

411.6 SUPERCLIP DIRECTIVES

The following directives listed in Table 11.5 are available as part of the SuperCLIP sub-
I system described in 49.

Table 11.5 SuperCLIP Directives

Name Modifier or Function
Subclass

Status

RUN Starts execution of another Proces- Operational
sor

STOP Stops execution of Processor, restarts Operational
parent

11-10

§11.7 WORKPOOL DIRECTIVES

$11.7 WORKPOOL DIRECTIVES

A group of directives that begin with the letter W is available as command interface to the
local data manager called Workpool Manager. The following directives listed in Table 11.6
are available.

11-11

Sectlon 11: DIRECTIVE CLASSIFICATION

____ - - - -- -

1 Stat us ~ _ _ Name Function

Table 11.6 Workpool Directives

WALLOCATE

WCHANCE

WDEALLOCATE

WDEFINE

WDIMENSION

WCET

WMAP

WPRINT

WPUT

WSET

1

Allocate scratch workrecord Operational

Change logical size of workrecord Operational

Reclaim storage used by workrecord Operational

Define macrosymhol from workrecord Operational
values

Set the first matrix dimension of Operational
workrecord

Read database record (s) into workrecord Operational

Give allocation map of the Workpool Operational

Print contents of workrecord Operational

Write workrecord to nominal li- 0 pera t ion a1
brary

Set workrecord items to specified
values

Operational

11-12

12
ABORT

12-1

Sectlon 12: ABORT

$12.5 THE ABORT DIRECTIVE

Purpose

Trigger an abnormal run termination.

Format

I *ABORT [/BATCH] 1
Word Qualifiers

BATCH Abort if process is running in batch mode, or else do nothing.

Description

When an ABORT directive is detected, CLIP forces an immediate run abort condition. The
way in which this condition is triggered depends on the host computer and operating
system, but the end result is the same.

Operational Restrict ions

Post-mortem actions will depend on the operating system.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

12-2

-

512.1 T H E ABORT DIRECTIVE

CLIP suhsystem(s) required:

None.

Status

Operational.

REMARK 12.1

If the interrupted process was initiated by another (parent) Processor via Superclip, control does
not return to the parent Processor.

REMARK 12.2

Run abort is useful when running on batch mode under certain operating systems which produce
post-mortem information such as core dumps. You will rarely need it for interactive work.

EXAMPLE 12.1

IF (BADNEWS) CALL CLPUT ('*ABORT')

12-3

Sectlon 12: ABORT

THIS PAGE LEFT BLANK INTENTIONALLY.

4

12-4

13
ADD

.

13-1

Sectlon 13: ADD

$13.1 THE ADD-FILE DIRECTIVE

Purpose

Redirects command input to a script file.

Format

END

I *ADD Filename [/CLOSE] [/END] [/READ] I
~ -~ ~ __ ~~

Synonyms

INCLUDE and ADD are equivalent directive verbs.

Required Parameters

Filename The name of the card-image file from which CLIP will begin reading
data lines.

Word Qualifiers

CLOSE Close previous source unless a t root level. On ADDing Filename, the
command source stack stays a t same level. This has specialized use
on Cray/COS (and in general on any operating system that does
not allow read-only niultiyle connection of the same file to several
logical units).

If this qualifier appears, CLIP emits the one-word command

END
when the end of the ADDed file is sensed (or an EOF directive de-
tected). This is an ordinary command and is therefore received by
the processor, which may take action accordingly.

Forces file read-thrniigh when the directive is si1hrnitt.d a.q a me+
sage using CLPUT. Otherwise is has no effect.

READ

Description

When an "ADD file" directive is detected, CLIP opens the script file (in read-only mode if
this is allowed by the operating system) and connects it to a logical unit in the range 35-40,
as explained in $4 of Volume I. Selection of the logical unit is automatic. Processing of
the file is strictly sequential. When the end-of-file is sensed (or an EOF directive detected)
command input reverts to the previous source in the Command Source Stack.

I 13-2

$13.1 THE ADD-FILE DIRECTIVE

The ADDed file may contain ADD or CALL directives as long as the command murce
stack capacity is not exceeded (see Remarks 13.1 and 13.2 below).

Dataline Restrictions

This directive must be on a dataline by itself. If the script contains procediire definition(s),
line length must not ezceed 80 characters.

Operational Restrict ions

You must have permission to access the file. On systems such as VAX/VMS in which a
file may be opened in read-only mode, you may ADD files that belong to other users if they
give read permission. On systems that do not offer this feature, such as CRAY/COS, the
file should be under your ownership.

CLIP subsystem(s) required:

None.

Status

Operational.

REMARK 13.1

The ADDed file may contain any command or directive appropriate to a non-procedural source. In
particular, it may contain directives that again redirect the command source input, such as CALLS
or other ADDS. (See next Remark as to ADDing the same file several times.)

REMARK 13.2

If the operating system allows a file to be opened with a read-only option, the same file may be
added at different command source stack levels. This means that the same disk file is connected
to different FORTRAN logical units. This happens, for instance, if you do “ADD recursion”. Rut
some operating systems do not allow multiple connection if the read-only option is not provided.
In this case the file should appear only once and recursive ADDing is ruled out.

REMARK 13.3
If the file is not found, or cannot be accessed for some reason (c.g., file access denied by owner),
the message

Can @ t open Filename

is issued but the run continues normally.

REMARK 13.4

Any text following this directive on the same dataline is ignored.

4

-
REMARK 13.5

Univac users may recognize the influence of the @ADD control statement.

13-3

Sectlon 13: ADD

EXAMPLE 13.1

*ADD JAD:SHOCK.DAT

Subsequent commands will be read from file JAD : SHOCK. DAT (a VAX filename).

EXAMPLE 13.2

call CLPUT (‘*ADD/R JAD:SHOCK.DAT ‘ 1

File JAD : SHOCK. DAT is ADDed by submitting a message using CLPUT. The READ qualifier means that
CLIP will open the file and begin to read from it before returning from CLPUT.

$13.2 THE ADD-TEXT-DATASET DIRECTIVE

Purpose

Redirects command input to a Text Dataset script resident on a positional library.

Format

I *ADD Tezt-dutuset-id [/END] [/READ] I
Synonyms

INCLUDE and ADD are equivalent directive verbs.

Requ i red Parameters

Tezt-dut uset -id Identifies the Text Dataset to be ADDed. The identification involves
two items. The first is the Logical Device Index (LDI) of the source
data library, which must be open at the time the ADD is issued. The
second item identifies the dataset by name or by sequence number:

ldi , Dutuset-name
Id;. dsn

If the first form is used, Dataset-nume should not have masking
characters or cycle range specifications.

Word Qualifiers

END Same as in the ADD-file case.

READ Same as in the ADD-file case.

I Descript ion

When an “ADD Text Dataset” directive is detected, CLIP queries the NICE-GAL data
manager as to the existence of the dataset. I f the dataset exists and is of text type, a
channel to it is set and an internal card-image buffer primed. Subsequent dataline requests
are taken from the buffer. When the end-of-dataset is sensed (or an EOF directive detected)

I
I 13-4

513.3 T H E ADD-TEXT-GROUP DIRECTIVE

command input reverts to the previous source in the Command Source Stack, but the data
library is not closed.

The ADDed dataset may contain ADD or CALL directives as long as the command source
stack capacity is not exceeded. .
Dataline Restrictions

This directive must be in a dataline by itself. If the script contains procedure definition(s),
line length must not exceed 80 characters.

Operational Restrictions

The library must be open when you issue the ADD directive. The status and contents of the
source library should not be altered while the ADD is in progress; otherwise very strange
things may happen.

CLIP subsystem(s) required:

NICE-DMS Interface.

Status

Operational.

REMARK 13.6

If the LDI is inactive or the dataset is not found, an appropriate error message is given but the
run continues normally.

REMARK 13.7

Any text following this directive on the same dataline is ignored.

EXAMPLE 13.3
*OPEN 3 . HOME:SCRIPT.LIB /R
*ADD 3, OWN-WEIGHT.LOADS

Positional data library HOME : SCRIPT. LIB is opened in read-only mode and connected to Logical
Device Index 3. CLIP is then told to get command input from Text Dataaet OWN-WEIGHT. MADS.

513.3 THE ADD-TEXT-GROUP DIRECTIVE

Purpose

Redirects command input to a Text Group script resident on a nominal library.
*

Format

I *ADD Ted-group-id [/END] [/READ] I
-.

Synonyms

INCLUDE and ADD are equivalent directive verbs.

13-5

I Sectlon 13: ADD

Required Parameters

Text-group-id Identifies the Text Group to be ADDed. The identification involves
three items. The first is the Logical Device Index (LDI) of the
source data library, which must be open at the time the ADD is
issued. The third item is the Text Group key. The second item
identifies the owner dataset by name or by sequence number:

ldi. Dataset-name, Key

ldi, dsn, Key

If the first form is used, Dataset-name should not have masking
characters or cycle range specifications.

I Word Qualifiers

END

READ

Same as in the ADD-file case.

Same as in the ADD-file case.

Description

When an "ADD Text Group" directive is detected, CLIP queries the NICE-GAL data
manager as to the existence of the dataset and Text Group. If both entities exist, a channel
to it is set and an internal card-image buffer primed. Subsequent dataline requests are
taken from the buffer. When the end-of-Text-Group is sensed (or an EOF directive detected)
command input reverts to the previous source in the Command Source Stack, but the data
library is not closed.

Da ta l ine Res t r ic t ions

This directive must be in a dataline by itself. If the script contains procedure definition(s),
line length must not ezceed 80 characters.

O p e r a t i o n a l Res t r ic t ions

The library must be open when you issue the ADD directive. The status and contents of the
source library should not be altered while the ADD is in progress; otherwise very strange
things may happen.

CLIP subsys tem(s) required:
I

~ NICE-DMS Interface.

I S t a t u s
I

Operational.
1

13-6

.

c

.

~ ~~

$13.4 THE ADD-UNIT DIRECTIVE

REMARK 13.8

If the LDI is inactive, or the dat,aset is not found, or the Text Group is not foiind, tin appropriate
error message is given but the run continues normally.

REMARK 13.9

Any text following this directive on the same dataline is ignored.

EXAMPLE 13.4
*OPEN 18, HOME:SCRIPT.LIB /Et
*ADD 18. OWN-WEIGHT.CASE.12, LOADS

Nominal data library HOME:SCRIPT.LIB is opened in read-only mode and connected to Logical
Device Index 18. The ADD directive then tells CLIP to get command input from Text Group
LOADS that belongs to dataset OWN-WEIGHT . CASE. 12.

513.4 THE ADD-UNIT DIRECTIVE

Purpose

Redirects command input to a preconnected unit, with the users terminal m special case.

Format

[*ADD unit [/TERMINAL] I

Directive Parameters:

unit Number of a “preconnected” logical unit to which input will be
redirected. CLIP does not open this unit as in the case of the “ADD
file”; but begins immediately to read from it.
A value of zero denotes the users terminal.

Word qualifier

TERM1 N AL Not presently implerneriled.

Description

When an ADD directive of this form is detected, CLIP does not try to open a file as in
the case of the ADD file directive. Command input is redirected to the logical unit unit,
which is assumed to be preconnected. The unit is not rewound. On detecting an end-of-file
condition, command input reverts to the previous source but the unit is not closed.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

Section 13: A D D

CLIP subaystem(s) required:

None.

Status

Operational for ADD 0; other forms are less reliable.

REMARK 13.10
This directive is useful in advanced “spectator mode” sequences. To give an example, suppose
that the master processor is running under a script or procedure while the user monitors the run.
Suddenly the program encounters a situation which requires user intervention. It then sends an
*ADD 0 message through the mail facility, perhaps preceded by an Attention!! message. The user
sees the prompt come up on the terminal and enters appropriate commands. To revert to the
previous source, the user types a 0 on column 1, which acts as a “terminal end of file” , and CLIP
will then pop the Command Source Stack and revert to the previous input source.

EXAMPLE 13.5

A processor SOLVE is to be run on the VAX in interactive “spectator” mode. A predefined system
procedure RUNSOLVE. COM contains

Saseign n- txc4 : f or018
$run aolver
*add aolver.dat

c

13-8

14
ALIAS

14-1

Sectlon 14: ALIAS

$14.1 THE ALIAS DIRECTIVE

Purpose

Define abbreviation for a text string.

Format

I *ALIAS [/DELIMITER=Deliml Abbreviation = Definition-telt I

Status

Not implemented.

$14.2 GENERAL DESCRIPTION

An abbreviation is a symbol that has a name and a value. The name may be up to 16
characters long and consist of letters, digits, underscores and dollar signs, but the first
character must be a letter. The value is a character string that contains from 0 through
255 characters.

When the abbreviation name is found as the first item of a command, it is replaced by
its value. Replacement takes place before any other line-processing action (e.g., macrosym-
bo1 replacement or argument substitution) occurs. If the name is not the first item, the
substitution does not take place.

An abbreviation is similar to a protected-string CLIP macrosymbol, except that it
does not have to be identified as a macrosymbol by being enclosed in special characters.
An abbreviation, on the other hand, is more restricted than an ordinary macrosymbol in
several respects; for example, it must appear as the first item, cannot be nested, may not
stand for a numeric expression, and cannot have arguments.

To illustrate the differences and similarities between abbreviations and macrosymbols,
consider the following directive

*ABB LF = 'LIST 1NPUT.FIL'

This establishes LF as an abbreviation for LIST INPUT. FIL. One can now type, for example

LF

and the effect is the same as entering

I LIST 1NPUT.FIL

The same effect can be achieved with a macrosymbol by defining
I l *DEF/A LF = 'LIST 1NPUT.FIL'

and one then types <LF>. The macrosymbol is more flexible in that one can put it anywhere;
for example

I 14-2

514.2 GENERAL DESCRIPTION

* <LF>
yields the directive *LIST INPUT. FIL. But it involves extra keystrokes when that flexibility
is not warranted.

,

14-3

I Section 14: ALIAS

I

THIS PAGE LEFT BLANK INTENTIONALLY.

14-4

15
CALL

.

Sectlon 15: CALL

§16.1 THE CALL DIRECTIVE

Purpose

Redirects input to a callable procedure element.

Format

I *CALL [/DELETE] [/READ1 Procedure-name [Argument-list] I
Required Parameters

Procedure-name The name of the callable procedure element. For rules governing
this name, see PROCEDURE section.

Optional Parameters

A rgument-last An optional list of argument specifications may follow the procedure
name. The format is:

(Argl = Teztl ; Argh = Tezth ; ...)
where Argl, Argd . . . are formal argument names, and Teztl, Teztb,
. . . are the corresponding replacement textstrings.
Argument specifications are separated by semicolons.
The opening parenthesis must be preceded by a blank.

Arguments may appear in any order. If a formal argument is omit-
ted, occurrences of that name in the procedure body are erased
(or, more technically, replaced by a null string) unless default text
has been specified in the procedure declaration as discussed in the
PROCEDURE directive section.

Word Qualifiers

DELETE On exit from procedure, delete file that contains the compiled form
of it. Only applicable if this form resides on an ordinary file, and
the running processor has delete privileges on that file.

READ Forces prncediire rmd-fliroiigh when thc rlirective is sii?,mit.t,crl as

a message using CLPUT. Otherwise is has no effect.

Description

When you issue this directive, CLIP will begin reading data lines from the callable proce-
dure element, following a file-open if appropriate. You may visualize the effect of the CALL
by imagining that the body of the callable procedure, with formal arguments replaced as
indicated, replaces the directive line. (Of course the visualization would be strained if the
body contains other CALLS.)

15-2

c

515.1 THE CALL DIRECTIVE

Input reverts to the previous source when the end of procedure is reached, or a RETURN
or EOF directive encorintered. If the DELETE qualifier is given and the compilcd procediire
resides on an ordinary file, the file is closed, then re-opened with delete privileges (if
possible) and closed with delete option.

Dataline Restrict ions

This directive must be in a dataline by itself, although it may be continued over many
lines. Qualifiers, if any, must appear between the CALL verb and the procedure name.

Operational Restrict ions

If the callable procedure element resides on a file, you must have appropriate access per-
missions to read that file. If the DELETE qualifier is given, you must have delete permission.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem required

Command Procedure.

Status

Operational.

REMARK 15.1

Leading and trailing blanks that appear around the replacement textstrings are stripped. The
same is true of internal blanks unless you protect the text with apostrophes, as in Example 15.6.
For additional details see $5.3.

REMARK 15.2

Macrosymbols, prompt strings and formal arguments (the latter if the CALL occurs within a
procedure) may appear in Argumcnt_l:st.

REMARK 15.3

If a n error is detmted ah i l c processing the CALL directive (fnr example. R n undefined argument
name is specified), processing of the directive is tertrrirrated and the procedure is not called.

EXAMPLE 15.1

*CALL OPEN.LD1 (LDI = 3; FILE = LIBRARY . G A L ; OPT = NEW)
h

The formal argument names are LDI, FILE and OPT. The corresponding replacement texts are: 3,
LIBRARY .GAL and NEW. Note the use of blanks for readability.

16-3

Sectlon 15: CALL

EXAMPLE 15.2

This is the same CALL as before, but now it is broken into several lines:

*CALL OPEN.LD1 (- - Call OPEN procedure
- - Library filename

LDI = 3 ; - - Logical Device Index
FILE = LIBRARY.GAL ;
OPT = NEW) . Statue option

All text to the right of the hyphenation marks is treated as comment.

EXAMPLE 15.3

Yet another variant, in which the argument-text portions are replaced by prompt (quote) strings:

*CALL OPEN.LD1 (
LDI = "Logical Device Index (1-30)?
FILE = "Library Filename? It - -
OPT = "Option8 (NEW/OLD/SCR)? "1

It - -

EXAMPLE 15.4

Some CLIP users have raised the question: why are semicolons used as argument list separators?
Why not the more familiar commas? Answer: to permit transmission of comma-connected lists
aa replacement text without forcing apostrophe protection, as in

*CALL SHELL.SORT (V = 6,6,1,21,3,13,2 ; ORDER=UP)

EXAMPLE 15.5

On a similar topic: can semicolons be included in the replacement text? Yes. Use enclosing
apostrophes, as in

*CALL OTCLIB (P = '*open 3,newlib ; *toc 3 ; cloee 3 ')

This is an impressive example although admittedly an unlikely one. But it illustrates the fact
that virtually anything can be replacement text.

15-4

16
CLOSE

h

18-1

Sectlon 16: CLOSE

516.1 THE CLOSE DIRECTIVE

Purpose

Closes a data library or all active libraries.

Format

]*CLOSE [ldil [/DELETE] I

Optional Parameters

ldi If positive, Logical Device Index of library file to be closed.
A negative ldi serves a special purpose (see the GAL Manual).
If omitted, all active libraries are closed.

Word Qualifiers

DELETE Delete library file upon close. Use with extreme caution.

Description

You may use the CLOSE directive to close a specific data libraries or all active libraries.
A closed data library can no longer be referenced by the Processor, and ceases to exist
if it resided on a scratch file, or if the DELETE qualifier is used. For surviving libraries, a
flush-buffer operation is performed as part of the close service.

Operational Restrict ions

To specify a close-with-delete, you should have delete privileges on the library file(s).

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

NICE-DMS Interface.

Status

Operational.

REMARK 16.1

No diagnostic is given if the indicated library is not presently active, or if no libraries are active
when a no-LDI directive is issued.

REMARK 16.2

You will normally see an informative message issued by the 1/0 Manager DMGASP, unless such
messages have been suppressed.

16-2

~~

516.1 T H E CLOSE DIRECTIVE

EXAMPLE 16.1

Close library attached to Logical Device Index 0:

*CLOSE 6

EXAMPLE 16.2

Close all active libraries:
*CLOSE

EXAMPLE 16.3

Make the Processor close all libraries near the end of the run.

CALL CLPUT (’ *CLOSE ’ 1

.

16-3

Sectlon 16: CLOSE

THIS PAGE LEFT BLANK INTENTIONALLY.

16-4

.

17
COPY

17- 1

Sectlon 17: COPY

$17.1 THE COPY-DATASET DIRECTIVE

Purpose

Copies and optionally renames selected datasets from a library to another.

I Format

.
I *COPY DATASET Output-dataset = Input-dataset [/DELETED J I

Abbreviation
I *COPY DATASET may be abbreviated to *COPY.

Required Parameters

Output-dataset Identifies the residence and name of output dataset(s). The general
specification is

Idid. I Output-datasct-name]

where ldid is the Logical Device Index of the destination library,
and Output-dataset-name specifies the name of the output dataset.

The destination library may be the same as the source library. If
different, both libraries must be of the same format: positional or
nominal (see Operational Restrictions).
If the name is omitted, the output dataset(s) will have the same
name as the source dataset(s). Restricted masking specifications
are allowed for the case in which several datasets are copied: if a
name component is replaced by an asterisk the corresponding key
or cycle in the input dataset name is substituted.

Input-dataset The input dataset(s) are identified by one of the constructions

ldis, d sn l [: dsn21

ldis. Soirrce dataset-name

where ldis is the Logical Device Index of the source library and the
following item(s) specify the source dataset(s) to be copied.

The first form specifies that datasets in the range dsnl through
dsn2 (inclusive) be copied.

The second form restricts the copy to datasets whose name matches
Input dataset-name. Masking and cycle-range specifications are ac-
ceptable.

17-2

.

$17.2 THE COPY RECORD DIRECTIVE

Word Qualifiers

DELETED Copy only deleted datasets.

If no qualifiers are given, only active datasets are copied.

Description

The COPY DATASET directive tranfers whole datasets or selected nominal dataset records
from one library to another (or the same) library. The copy process is more efficient in
positional libraries since a blocked copy may be used. In nominal libraries, a record-by-
record copy is used, which may be inefficient in the case of many small records.

Operational Restrict ions

Both source and destination library must be open at the time the directive is given. The
destination library must have write permission. Both libraries must be of the same format.
You may copy from a positional library to another positional library, or from a nominal
library to another nominal library. But you may not copy from a nominal library to a
positional library or vice-versa.

CLIP Subsystem(s) Required

NICE-DMS Interface.

Status

Operational.

REMARK 17.1

Deleted datasets can be copied by using the qualifier DELETED. These datasets become active in
the destination library.

EXAMPLE 17.1

Copy datasets sequenced 3 through 6 from library 11 to library 5.

*COPY 6 = 11,3:0

EXAMPLE 17.2

Copy all datasets in library 11 whose mainkey is STRUCTURE to library 14 with identical names:

COPY 14 = 11, STRUCTURE.

EXAMPLE 17.3

As above, but change the mainkey to FLUID:

COPY 14, FLUID. = 1 1 , STRUCTURE.*

17-3

Sectlon 17: COPY

$17.2 THE COPY RECORD DIRECTIVE

Purpose

Copies and optionally renames selected records from a nominal dataset to another.

Format

I *COPY RECORD Output-record = Input-record [/KEY] [/MERGE]

Required Parameters

Output-record

Input -record

Word Qualifiers

KEY

MERGE

Identifies the residence and name of the output record(s).

Identifies the residence and name of the output record(s).

Not implemented.

Not implemented.

Description

The COPY RECORD directive transfers one or more named records from one nominal dataset
to another nominal dataset. The source and destination datasets may be in the same library
or in different libraries.

Operational Restrictions

Both source and destination libraries must be open at the time the directive is given.
The destination library must have write permission. Both libraries must be of nominal
(GAL82) type.

CLIP Subsystem(s) Required

NICE-DMS Interface.

Status

Operational.

EXAMPLE 17.4

Copy record DATA.5 from dataset 16 of library 6 to dataset 18 of the same library, with same
name:

*COPY REC 5.18 = 5.16,DATA.l

17-4

t

$17.2 T H E COPY RECORD DIRECTIVE

EXAMPLE 17.5

Copy record group DATA. 6 : 18 from dataset 16 of library 6 to dataset NEWDATA of library 8, changing
the record key name to DATAX:

*COPY REC S,NEWDATA,DATAX = 5.16.DATA.S:18

EXAMPLE 17.6

Copy last 3 cycles of record group keyed HISTORY from dataset 16 of library 6 to the same dataset,
renaming them H. 1 : 3:

*COPY REC 6.16,H.l = 6,16.HISTORY,H-2:H

EXAMPLE 17.7

Copy all records whose key starts with D from dataset 16 of library 6 to dataset 4 of library 7,
with same name (renaming is unsafe an masked-record copy):

COPY REC 7.4 = 6,16,D

17-5

Sectlon 17: COPY

THIS PAGE LEFT BLANK INTENTIONALLY.

17-6

18
DEFINE

18-1

i Section 18: DEFINE

$18.1 THE DEFINE DIRECTIVE

Purpose

! Defines or redefines a macrosymbol.

I Format

*DEFINE [/ Type] [/READ=f-info] [/SCOPE=leuel]
Macro-name {= I E=} Definition-tezt

Required Parameters

Macro-name The macrosymbol name. The name may contain up to 16 charac-
ters. In the case of a macrosymbol array, the index and enclosing
brackets are considered part of the name.
The first character must be a letter or a dollar sign. If the latter,
the second character must be a letter. Be careful not to conflict
with the built-in macrosymbol names listed in $5.

The macro definition text is a string of up to 420 arbitrary char-
acters. If this text contains delimiters such as blanks or commas,
or macrosymbol references, it should be enclosed within apostro-
phes. You may also use apostrophes to prevent pre-evaluation &s

explained in 54.

The text may be an item list, in which case it defines a macrosymbol
array. Refer to $5 for details.
Macro-name and Definition-tezt must be separated by an equal
sign, or an equal sign pair. The latter is used to force global scope.

Definition-t ezt

Qualifiers

Type A macrosymbol type other than default must be specified as a qual-
ifier immediately following the DEFINE keyword (never after the
macrosymbol name). Legal types are listed in $4.

Phrase Qiialificrs

~

READ=f-:nfo You may use this specification to define macrosymbol values from
data stored in an ASCII file. The specification of f-info is:

I f-info = unit_number,starting-line-number,number_of-lines_to_read

The file must be opened with a previous issue of the directive
*FOPEN unit-number, f i k n a m e (see Chap. 35 in Vol. 11) Note that,
now the user has the ability to rewind the file and close it with

c

18-2

518.1 THE DEFINE DIRECTIVE

SCOPE=leucl

the *FREWIND and *FCLOSE directives. The stnrting.line-nurnber is
the line number in file.nnrne at which you wish t.o begin rending
data. The number_of-lines-to-read is the number of lines of data to
be read. See Examples 18.7 & 18.8. If the READ qualifier is given, it
must appear before the macrosymbol name.

You may use this specification to set the macrosymbol scope to
a nondefault value. (For a discussion of the macrosymbol scope
concept, see 55.) If the SCOPE qualifier is given, it must appear
before the macrosymbol name.
If level is a positive number, the scope is set to this number. If leoel
is negative, the scope is set to the current procedural level minus
I levell, but never less than zero.
If the macrosymbol name begins with $ this qualifier phrase is ig-
nored.
If this qualifier phrase does not appear, the macrosymbol scope is
set according to the default rules stated in 55.

Description

The macrosymbol name is checked against the macrosymbol name table and any macrosym-
bols with the same name and equal or higher level is marked as undefined. If the type is
not P, the definition text is pre-evaluated unless protected with apostrophes. The resulting
definition text, name, type and scope are stored in the macrosymbol table. If the directive
defines a macrosymbol array, the preceding operations are carried out in a loop implicitly
controlled by the length of the item list that appears after the equal sign(s).

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

Macrosymbol.

8 tat us

(3 pera t, iona 1.

REMARK 18.1

If an error is detected while processing a single macrosymbol, that macrosymbol is not defined.
A more complicated situation may occur if' the error is detected while processing a macrosymbol
array definition: processing is discontinued with the possible result that some entries end up
dlefined while others are undefined.

F!EMARK 18.2

When you define a macrosymbol array by making Definition-tezt a list, comma separators are
essential. Redundant commas generate zero items; see Example 18.3.

18-3

Sectlon 18: DEFINE

EXAMPLE 18.1

Define floating-point macrosymbol XX at current procedural level, and give it the value 7r2:

I *DEF XX = (< P I > - 2)

, Deferred evaluation is not necessary here because PI is a built-in macrosymbol.

EXAMPLE 18.2

As above, but make XX global:
*DEF XX == ((P D - 2)

EXAMPLE 18.3

Define the %integer macrosymbol array KRONECKER with values 1, 0 , 0, 0 . 1, 0 , 0 , 0 , 1:

*define Kronecker = l,,,,l,,,,l

EXAMPLE 18.4

As above, but in KROMECKER[S: 131 :

*define Kronecker I S : 131 = I, , ,1, , , , 1

EXAMPLE 18.5

Define macrosymbol array REC-ID as a list of three character macrosymbols LIBRARY, DATASET and
RECORD:

*DEF/A REC-ID = '<LIBRARY>','~DATASET>"(RECORD>'

EXAMPLE 18.6

Define integer macrosymbol array LEVEL as 20 values equal to 12:

*def/i leve1[3:20] = 1 2

EXAMPLE 18.7

An ASCII file data. numbere contains

1, 5
7
1 3

To define four indexed (array) integer macrosymbols from this data you issue the first directive
to open the file, the second to define the macrosymbols, and the third to close the file.

*fopen 17, data.numbers

4

*define/i /read=17,1,3 yoursym =

*fcloee 17

18--4

c

t

This will produce: YOURSYM[ll = 1
YOURSYM[21 = 6
YOURSYM[3] = 7
YOURSYM[Q] = 13

Note that, the Q p e qualifier is required and the final ’=’ sign is REQUIRED in the *define.

EXAMPLE 18.8

An ASCII file data2 .nunber6 contains

1 6
7
13

To deRne four indexed (array) integer macrosymbols from this data you issue the fir& directive
to open the Rle, the second to define the macrosymbols, and the third to close the file.

*fopen 17, data2.numberr

*def ina/i /read=l7.1,3 yourrym[l : 41 =
*fCl060 17

This will produce: YOuRSYM[ll = 1
YOURSYM[21 = 6
YOURSrn[3] = 7
YOURSYM[Q] = 13

Note that, the Q p e qualifier is required and the final ’=’sign is REQUIRED in the *define.

And the [1:4] is required to get CLIP to properly read the first line with 2 numbers and no comma
separator. However, if each number is a separate line in the file then you can omit the [m:nl
and you will get the number of indexed macrosymbols equal to the num6er_of_lines_to_read you
requested.

REMARK 18.3

Actually, the /READ phrase qualifier data works the same as the present macro *define directive
works. That is, if you leave out the commas and don’t ask for indices you don’t get indices or
anything except the first number read.

I woiild be very careful with strings, occasionally /READ option does some strange things with /A
and /P types. So let’s say the /READ option is operational for numerics.

18-5

Section 18: D E F t N E

THIS PAGE LEFT BLANK INTENTIONALLY.

c

18-6

19
DELETE

. . .

19-1

Section 19: DELETE

$19.1 THE DELETE DATASET DIRECTIVE

Purpose

Deletes dataset(s) from a data library.

Format

[*DELETE DATASET Datmet-id I
Abbreviation

*DELETE DATASET may be abbreviated to *DELETE.

Required Parameters

Datasetid Identifies the dataset(s) to be deleted. The specification may be by
name or sequence number range:

Itit'. Datmet -name
fdi. den11 : dunll

The first form specifies that datasets in library Idi whose name
matches Dataset-name are to be deleted. The name may contain
masking or cycle range specifications.

The second form specifies that datasets in library Id; whose sequence
number falls in the range dbnl through h n % (inclusive) are to be
deleted. If &tat is omitted, dun2 = &nl is assumed.

Description

You may use the DELETE DATASET directive to mark datasets in a data library as deleted.
The datasets may be identified by name or by sequence range. Deleted datasets are not
physically removed from the library until a PACK operation is performed. Until then, a
deleted dataset may be restored to active status through an ENABLE operation.

Operational Restrictions

Data library file must be open and have write permission. Datasets must not be locked
against deletion.

CLIP Subsystem(s) Required

NICE-DMS Interface.

Status

Operational.

19 -1

$19.2 T H E DELETE RECORD DIRECTIVE

c

.

REMARK 19.1

No diagnostics are given if dataset(s) that match the input specifications are already Meted.

EXAMPLE 19.1
Delete dataeeta 21 through 32 (inclusive) from library 7:

*DELETE 7. 21 :32

EXAMPLE 19.2

Delete from library 16 all datasets whose extension begins with TEMP:

*DELETE 16, * .TEMP*

$19.2 THE DELETE RECORD DIRECTIVE

Purpose

Deletes named record(s) from a nomina1 dataset.

Format

*DELETE RECORD Record-id [/COMPRESS] [/KEY J

Required Parameters

Record-id Identifies the record(s) to be deleted. The dataset specification may
be by name or sequence number range:

ldi, dsnl[: dsn.21 , Record-name

ldi, Dataset-name, Record-name

Record-name identifies the records to be deleted in the specified
datasets. If the qualifier KEY is not given, the most general form of
Record-name is that befitting a Record Group, viz.

Key. low-cycle: high-cycle

If this form is used. K P ~ shoiilrl nnt have masking characters. Sce
also Remark 19.2.
If the KEY qualifier is given, the cycle specifications should be omit-
ted and Key may contain masking characters.

Word Qualifiers

COMPRESS Not implemented.

KEY Delete all records that match the input key, regardless of cycle.

19- 3

I
Section 19: DELETE

Description

You may use the DELETE RECORD directive 4 0 mark one or more named records as deleted.
Unlike datasets, a deleted record cannot be restored to an active status. Although the
record itself is kept in the library, the record pointer is often erased.

O p e r a t i o n a l Restriction8

Data library must be open and have write permission. Owner datasets must not be locked
against delet ion.

CLIP Subsys tem(s) Requi red

NICE-DMS Interface.

I S t a t u s

Experimental; format subject to change. Avoid use until fully operational since library
damage may occur.

REMARK 19.2

It is possible to delete selective records from both "ends" of a Record Group. Deletion of interme-
diate cycles, however, may result in the "Conflicting Record Group delete" error condition. For
example, suppose that you have Record Group CCC .7 : 40 using a single Record Access Packet and
that you try to delete GGG . 16 : 22. The operation will fail because the remainder, namely CGG. 7: 14
and CGC .23 : 40, would use up two Record Access Packets, and presently the Global Data Manager
lacks the necessary splitting ability. On the other hand, deleting GGG. 7 : 16 or GOO. 22: 40 would
be reasonable.

EXAMPLE 19.3

Delete records named CONTENTS in all datasets of library 7:

*DELETE RECORD 7 , * , CONTENTS

EXAMPLE 19.4

Delete the lowest 4 cycles of Record Group HISTORY from dataset TRANSIENT .RESPONSE in library
10:

*DELETE RECORDS 16,TRANSIENT.RESPONSE, HISTORY.L:L+3

EXAMPLE 19.5

Delete from dataset at sequence 56 of library 3 all records whose key starts with 1:

DELETE RECORDS /KEY 3, 66, T

.

20
DO

20-1

Sectlon 20: DO

$20.1 THE DO DIRECTIVE

Purpose

Introduces a FORTRAN-like looping construction.

Format

I *DO [: L a b e l] Macro-name = i l , i2 [,i3]

Required Parameters

Macro-name The name of a local macrosymbol that will serve as control variable.
The first character of the name must be a dollar sign; the second
must be a letter. Integer type is assumed regardless of the letter.

The macro is defined when the DO begins execution. On the first
pass, it has the value i l , on the second pass it is i l + i s , and so
on. On exit from the loop, the macrosymbol retains the last value
assigned to it. The local scope has implications as to materialization
and "export" of the macrosymbol value.

The cycle/exit condition is identical to that used in the FORTRAN
77 language.
The equal sign after Macro-name is mandatory.

il An integer or integer expression that specifies the initial value of
the control variable.

An integer or integer expression that specifies the final value of the
control variable.

Optional Parameters

La bel The label that closes the loop. If omitted, the loop is terminated
by a matching ENDDO directive, which has to appear on a line by
itself.

An integer or integer expression that specifies the increment of the
control variable. The value may be positive or negative, but not
zero.
If i3 is not given, a value of f 1 is assumed, depending on the
values of il and is. A zero value is treated as a non-given value and
transformed to +1. This strategy aims to protect against infinite
loops.

.

20-2

$20.1 THE DO DIRECTIVE

Description

DO blocks can only appear in command procedures. When the procedure compiler encoun-
ters a DO line, it generates an “UNDEFINE corit,rol variable” directive, an internal loopback
label, and a transformed DO line. The UNDEFINE direct,ive makes sure that the control
variable macrosymbol is freshly defined regardless of previous execution flow.

When the callable procedure element is read and a DO line detected, CLIP queries
the macrosymbol facility as to whether the control variable is defined or undefined. If the
latter, CLIP knows that this is the first loop traversal and defines the control variable
with a value i l . If defined, a jumpback has necessarily occurred, (recall that the generated
jumpback label is placed a l te r the UNDEFINE), therefore CLIP redefines the control variable
by incrementing its previous value by it.

The control variable value is compared against i z . If the exit condition is satisfied,
control passes to a generated label beyond the loop closure. Otherwise the loop is executed.

Dataline Restrictions

This directive must be in a dataline by itself.

Operational Restrict ions

DO loops may be nested up to a level of 16 maximum. The control variable is not normally
accessible from other procedures, but may be “exported” through macrosymbole or formal
arguments. See Example 20.1.

Processor Reference

Not applicable.

CLIP Subsystem(s) required

Command Procedure.

Status

Operational but not thoroughly tested.

REMARK 20.1

The DO directive supersedes the CYCLE directive of previous versions of CLIP and its ancestor
LODREC. DO has important advantages over CYCLE: advantages: it t,ests at the top, it works like
a FORTRAN DO with which many users are familiar, and the control variable is a macrosymbol
rather than a register. Since the last remaining use of registers in CLIP was to support CYCLE,
elimination of the latter means that registers may also be eliminated.

REMARK 20.2

There is another looping construction: the WHILE-DO, which is specified by directives WHILE and
ENDWHILE. Like DO, the WHILE-DO tests at the top, brit cycling is controlled by a logical rather than
an arithmetic condition. The WHILE-DO construct is more along the lines of similar statements in
C and Pascal, and may be consequently preferred by non-FORTRAN programmers.

Section 20: DO

REMARK 20.3

The use of an explicit label in the DO linc is usually a mabber of style. An c*xplirit lalwl conies
handy, however, when you want to write explicit transfers (using JUMP) to the end of the loop.

EXAMPLE 20.1

The following sample procedures DO and INNER illustrate nesting, control variable materialization,
and control variable “export” to higher procedural levels:

*proc do (nl=l;n2=4;n3=1)
*do Si = [nil, [n21, [n3]
*remark outer loop counter ie <Si>

*do $j = l,<$i>
*remark middle loop counter is <$j>

*do $k = l.<$j>
*remark innermoet loop counter ie c$k>
*call inner (i=<$i>; j=<$j>;k=<$k>)

*enddo
*enddo

*enddo
*end
*proc inner (i; j ;k)

*end
*remark proc INNER entered, arguments: [i] [j] [k]

I t is instructive to compile these procedures and then *CALL DO.

20-4

21
DUMP

21- 1

Section 21: DUMP

521.1 THE DUMP DIRECTIVE

Purpose

Print the contents of any VAX/VMS file in itern-by-item format.

Format

m e n a m e [item-range] [/Format] [/OUT=unit] I

Required Parameters

File name The name of the file to be dumped. This file is opened by the 1/0
Manager (DMGASP) in read-only mode and closed when the dump
operation is complete.

Optional Parameters

it em-range An optional item-range specification of the form

nl :n2

restricts file dump to item range nl through n2 inclusive. (Note
that these are logical values; for example, if the dump format is A,
nl and n2 denote characters.)
If omitted, 1 through the end-of-file (as seen by DMGASP) is as-
sumed. (For large files this can be a lot of print, so a restricted
range specification is recommended.)

Word Qualifiers

Format One-letter qualifier that specifies dump format, as listed in Table
21.1. If not given, hexadecimal (2) format is assumed.

Phrase Qualifiers

OUT=rrn,it Write oritpiit t n Inp,ical itnit tinit.. If not, givcn. wribe oiit.ptit, t.0 the
current CLIP print file (normally logical unit 6) .

Description

The DUMP directive may be used to print the contents of any VAX/VMS file on a item-by-
item basis, in alphanumeric (A) , floating (C,D,E), integer (I) or hexadecimal (Z) format.
The file is open by the 1 /0 Manager DMGASP in read-only mode. The specified item
print range is accessed using Block 1/0 and written to the output file according to the
specified format. Once finished, the file is closed.

21-2

$21.1 Tt

Operational Restrictions

E D I M P DIRECTIVE

You cannot dump files currently opened for write or files for which the owner has denied
read access. In particular, you cannot dump a scratch file, or currently active data libraries.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsyetem(s) Required

NICE-DMS Interface and Block I/O.

Status

Operational on VAX only. Format subject to change.

REMARK 21.1

A marvelous debugging aid.

EXAMPLE 21.1

Hex dump of file INPUT.DAT, words 100 through 252 (inclusive):

*DUMP 1NPUT.DAT 100:262

EXAMPLE 21.2

Character dump of first 300 bytes of file 1MAGE.DAT:

*DUMP/A 1MAGE.DAT 1:300

21-3

Sectlon 21: DUMP

Table 21.1. Item Dump Formats

Qualifier Item Dump Format

A alphanumeric

D double precision floating point

I integer

E,F,C single precision floating point

C complex (single precision)

2 hexadecimal

none 2 assumed

C

A

21-4

22
ELSE

33-1

Section 22: ELSE

$22.1 THE ELSE DIRECTIVE

Purpose

Introduces an "else" subgroup within an IF-THEN-ELSE block.

Format

Description

This directive introduces, within a IF-THEN-ELSE construction, one or more commands
which are to be processed if all previous IF and ELSEIF expression assertions fail.

When the procedure compiler encounters an ELSE directive. it generates a "catch all"
label and removes the ELSE line.

Da taline Restrict ions

This directive must be in a dataline by itself.

Operational Restrict ions

Works only within command procedures. Only one ELSE is permitted per IF-THEN-ELSE.

Processor Reference

Not applicable.

CLIP Subsystem(s) Required

Command Procedure.

Status

0 per a t ional .
EXAMPLE 22.1
See examples under IF and ELSEIF.

22-2

23
ELSEIF

.

23-1

Section 23: ELSEIF

523.1 THE ELSEIF DIRECTIVE

Purpose

Introduce an “else if” condition within an IF-THEN-ELSE block.

Format

1 *ELSEIF logical-expression /THEM I
Required Parameters

logical-ezpression An expression that evaluates to integer 0 for FALSE or I for TRUE.
More generally, a nonzero value is also interpreted as TRUE.
Control reaches this directive line if all previous ELSEIF tests as well
as the initial IF test, on this IF-THEN-ELSE block, have failed. If
the expression is TRUE, the following commands are processed and
control then transfers to the closing ENDIF line. If the expression
is FALSE, control passes to the next ELSEIF, ELSE or ENDIF in this
IF - THEN -ELSE block.

Description

The ELSEIF directive introduces, within an IF-THEN-ELSE block, commands whose execu-
tion is contingent upon the verification of its asserted numerical expression, and failure of
all preceding IF and ELSEIF assertions.

When the procedure compiler encounters an ELSEIF it generates a transfer label to
it, and maps the ELSEIF line into a labelled IF directive.

Dataline Restrictions

This directive must be in a dataline (or several datalines) by itself. The THEN qualifier
must be in the same line as the ELSEIF. If the logical-ezpression is so long that it requires
continuation lines, you should place the THEN immediately after the ELSEIF.

Operational Restrictions

Should be used only within command procedures. No more than 32 ELSEIFs may be
subordinate to one IF. I
Processor Reference

Not applicable.

~ CLIP Subsystern(s) Required

I Command Procedure.

23-2

523.1 THE ELSEIF DIRECTIVE

1

Statiis

Operational.

REMARK 23.1
The THEN qualifier may ..I fact be omitted an

EXAMPLE 23.1
Consider the following sample procedure

*proc if (a>
*def a = [a]

the procedure compiler will insert one for you.

*if < <a> /gt O> /then

*elseif < <a> /eq 0, /then

*else

*endif
*end

*rem The value <a> i o pooitivo.

*rom Tho valuo <a> l o t o r o .

*rem Tho value <a> io negativo.

If you say *CALL IF (A=O) the REMARK directive following the ELSEIF will be processed.

23-3

Section 23: ELSEIF

T H I S P A G E L E F T BLANK INTENTIONALLY.

23-4

24
ENABLE

24-1

I Section 24: ENABLE

524.1 THE ENABLE DIRECTIVE

Purpose

Returns deleted dataset(s) to active status.

~

Format

I *ENABLE Datasetid 1
a

Synonym

UNDELETE is the same as ENABLE.

I Required Parameters

I Dat aset-id Identifies the dataset(s) to be enabled. The specification may be
by name or sequence number range:

ldi, Datasetmame

ldi, d s n l l : dsn21
The first form specifies that datasets in library ldi whose name
matches Dataset-name are to be enabled. The name may contain
masking or cycle range specifications.
The second form specifies that datasets in library ldi whose sequence
number falls in the range dsnf through dens (inclvsive) are to be
enabled. If dsni is omitted, dsnb = dml is assumed.

Description

You may use the ENABLE directive to revert datasets in a data library to the active status.
Enabling a dataset may cause currently active datasets that have the same name to be
marked aa deleted because active dataset names must be unique.

Operational Restrict ions

Data library must be open and have write permission. Datasets that may have to be
deleted as a byproduct of this operation must not be locked against deletion.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

NICE-DMS Interface.

Status

Operational.

524.1 THE ENABLE DIRECTIVE

EXAMPLE 24.1

Enable dataeet at sequence number 132 in library 7:

*ENABLE 7 , 132

24-3

Section 24: ENABLE

THIS PAGE LEFT BLANK INTENTIONALLY,

24-4

25
END

I Sectlon 25: END

$25.1 THE END DIRECTIVE

Purpose

Terminates the definition of a command procedure.

Format

p 6 - J

Description

This directive terminates the definition of a command procedure introduced by a
PROCEDURE directive. It is illegal in all other circumstances.

I

Operational Restrict ions

Only works as part of a command procedure definition.

Dat aline Restrict ions

This directive must be in a dataline by itself.

Processor Reference

Not applicable.

Status

Operational.

CLIP Subsystem(s) Required

Command Procedure.

EXAMPLE 25.1

See examples in PROCEDURE Section and in $5.

25-2

26
ENDDO

I Sectlon 26: ENDDO
~

$26.1 THE ENDDO DIRECTIVE

Purpoee

Terminates a label-less DO loop.

I Format

Description

The ENDDO directive closes a command block headed by a matching label-less DO directive.
The procedure compiler transforms this line into an unconditional JUMP back to the internal
label that precedes the DO lines, and a generated exit label.

Da t aline Restrict ions

This directive must be in a dataline by itself.

Operational Restrictions

Works only within command procedures.

Processor Reference

Not applicable.

CLIP Subeystem(s) Required

Command Procedure.

Status

Operational.

.

EXAMPLE 26.1
See examples under DO.

26-2

27
ENDIF

37-1

Sectlon 27: ENDIF

527.1 THE ENDIF DIRECTIVE

Purpose

Terminates an IF-THEN-ELSE block.

Format

Description

This directive must appear as the last line of a IF-THEN-ELSE command block. The
procedure compiler transforms the ENDIF line into a “collective” exit label for the block.

Da t aline Restrict ions

This directive must be on a dataline by itself.

Operational Restrictions

Works only within a command procedure.

Processor Reference

Not a.pplicable.

CLIP Subsystem(s) Required

Command Procedure.

Status

Operational.

EXAMPLE 27.1

See the Sections on IF and ENDIF.

27-2

28
c

ENDLOG

.

28-1

Sectlon 28: ENDLOG

528.1 THE ENDLOG DIRECTIVE

Purpose

Terminates command logging.

Format

Description

This directive terminates the saving of dataline input on the command log file opened
through a previous LOG directive. This directive must be on an isolated dataline, which ie
not saved. The log file is closed.

Da taline Restrict ions

This directive must be in a dataline by itself.

Processor Reference

This directive may be submitted through the message entry point CtPUT.

CLIP Subeystem(s) Required

None.

Status

Operational.

REMARK 28.1

llpon entering this directive, you may want to TYPE the log file to see what it contains.

EXAMPLE 28.1

See the LOG Section and $3.

.

28-2

29
ENDWHILE

29-1

Sectlon 29: ENDWHILE

i28.1 THE ENDWHILE DIRECTIVE

Purpose

Terminates a WHILE-DO block.

Format

Description

A WHILE-DO block introduced by a WHILE directive must be termllzated by a matching
ENDWHILE directive. The directive line is processed by the procedure compiler analogously
to an ENDDO.

Data line Restrict ions

Must appear in a dataline by itself.

0 p era t iona 1 Restrict ions

Works only within a command procedure.

Processor Reference

Not applicable.

CLIP Subsystem(s) Required

Command Procedure.

Status

Operational.

EXAMPLE 29.1

See examples under WHILE.

c

L

29-2

30
EOF

30-1

Section 30: EOF

$30.1 THE EOF DIRECTIVE

Purpose

Endfile command source.

I Format

~

Description

This directive causes the processing of a command source to be interrupted just like if
CLIP had detected an end-of-file condition. It is moat widely used for scripts since for
command procedures the RETURN directive provides an equivalent function.

If this directive is issued at the root level, a normal run termination is taken, i c . , it
has the same effect as typing a Q sentinel (or equivalent control character).

Dataline Restrict ions

This directive must be in a dataline by itself.

Processor Reference

This directive may be (and usually is) submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

None.

Status

, Operational.

REMARK 30.1

Normally this directive is inserted by the running processor using a CLPUT call, aa in
CALL CLPUT (' *eof ' 1

, in response to a critical event (e.g., irrecoverable input error). More exotic is the u ~ e of the IFELSE
bu i I t-i n macrosymbol:

Cifelre (Cerror>;SERIOUS;*eof;)> . Got it?

I EXAMPLE 30.1

See examples in 53.

30-2

e

c

31
EOL

31-1

Sectlon 31: EOL

$31.1 THE EOL DIRECTIVE

Purpose

Inserts an end-of-line (EOL) terminator in the dataline collector.

Format

Description

This directive inserts an end-of-line (EOL) terminator after the current command in the
dataline collector. Commands, if any, waiting in the collector are erased. Has specialized
uses in highly interactive programming and message based systems. Rarely entered as user
directive; it is normally submitted as message using CLPUT (see Remark 31.1).

Dataline Restrict ions

When submitted as a message, it should not be followed by other commands or directives
in the same line.

Processor Reference

This directive may be (and usually is) submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

None.

Status

Operat ional.

REMARK 31.1

Normally this directive is inserted by the running processor using a CLPUT call:

CALL CLPUT (' *EOL' 1

when it wants to discard all commands that may follow in the same line, if any. Normally issued
after certain types of error conditions in esRent.ialty cOnVerSstiOnd programs such as interactive
graphic pre- and post-processors. Flushing the dataline collector helps to control error cascading
effects and simplifies error recovery procedures. If input is coming from a script or procedure
source, the EOL message is often followed by an EOF message.

31-2

.

32
FCLOS

32 -1

Sectlon 32: FCLOSE

I $32.1 THE FCLOSE DIRECTIVE

Purpose

Closes a FORTRAN logical unit.

Format

I *FCLOSE unit I

ORIGINAL PAGE IS
OF POOR QUALrrV

Required Parameters

unit Logical unit number of the file to be closed.
I

Description

The FCLOSE directive closes a FORTRAN logical unit assigned to the run. The unit
is normally connected to a card-image file explicitly opened with a FOPEN directive, or
implicitly opened aa nonstandard print output unit (e.g., with an OUT=unit qualifier),
The interactive user may want to close such units to TYPE them without interrupting the
Processor run; see Example below.

Processor Reference

This directive may be aubmitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

None.

Status
. . .

Operational.

EXAMPLE 32.1

The following illustrates a typical use of FCLOSE in an interactive session:

*FOPEN I2,TOC.LIS
*OPEN I, PROBLEM'. GAL
*TOC/OUT=l2 1
*FCLOSE 12
*TYPE TOC.LIS

I

File TOC .LIS is opened to receive the ?OC of library PROBLEM. GAL so it can be eventually sent to
a printer. Before exiting the Processor, however, the user checks the contents of FOR.LIS using
TYPE. But for TYPE (or LIST) to work the file must be closed first (because<it wag opened with

I write permission).

32-2

.

.

FIND

33-1

Sectlon 33: FIND

533.1 THE FIND DATASET DIRECTIVE

Purpose

Returns information on individual dataset.

Format

*FIND DATASET Dataset-id /BEG IN=dsnOl [/KEYS=Mac ro-name]
[/MKEY=maz-keys] [/MRAP=Macro-tzumel [/NAME=Macro-name]
[/ N 0 K = Ma c ro - num e I / N 0 R= Ma c ro - nu m e 1 / SEQ = Ma c ro - nu m e J

Synonyms

FIND and INQUIRE are equivalent directive verbs.

Abbreviation

*FIND DATASET may be abbreviated to *FIND.

Required Parameters

Datasetid Identifies the dataset to be queried. The identification involves two
items. The first is the Logical Device Index (LDI) of the source data
library, which must be open at the time the directive is issued. The
second item identifies the dataset by name or by sequence number:

ldi, Dataset-name

ldi, dsn

If the first form is used, Dataset-name may have masking characters
or cycle range specifications, but information is retrieved only for
the first dataset that matches the name.

Phrase qualifiers

BEGIN=dsnO Applicable if Dataset-id is specified by name. Begin dataset search
a t sequence number dsnO+l.

Jf omittcd. search starts a t seqirencc niimher 1.

KEYS-Macro-name Not implemented.

MKEY= maz-keys Not implemented.

NAME=Macro-name Return the full dataset name as value of macrosymbol specified after
qualifier NAME. The macrosymbol, of type A , is defined by error-free
execution of the directive. If the library identification or dataset
specification is incorrect, the macrosymbol is not defined.

.

33-2

~ ~~~~~
~ -~

$33.2 T H E FIND DATASETS DlRECTiVE

NOK=Macro-narne Number of keys.

NOR=Mucro-name Number of records.
SEQ=Macro-name If Dataset-id is specified by name and a matching dataset name is

found, return its sequence number as value of macrosymbol spec-
ified after qualifier SEQ. If not found, return the value zero. The
macrosymbol, of type I, is defined by error-free execution of the
directive. If the library identification or dataset specification is in-
correct, the macrosymbol is not defined.

Description

This directive is designed to collect information about an individual dataset. Such infm-
mation may be obtained from the Dataset Table (Table of Contents) of a given library.
For example: get the dataset name given its sequence number, or get the sequence num-
ber given the dataset name. Information is returned in the form of indirectly defined
macrosymbols. Some of the information retrieval options pertain only to nominal datasets.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

NICE-DMS Interface and Macrosymbol.

Status

Experimental; format subject to change. More qualifier options are likely.

REMARK 33.1

If this directive appears in a procedure, macrosymbols created from its execution will be semilocal
in scope if one equals sign appears after the qualifier and the macro name starts with a letter.
To force global scope, use a double equal sign after the qualifier. If the macro name starts with a
dollar sign, it will be local in scope regardless of the number of equal signs.

REMARK 33.2

The type (int.cger or alpha) of indircrtly rli*fincd marro!3yInhdQ i s qperifivrl hy the qiial i f iw. T I is
not affected by the first letter of the name as is the case for explicitly defined macrosymbols.

EXAMPLE 33.1

*open/old 21 . funlib
*find 21,rnatrix.data /req=matrix-eeq
*i f < <matrix-eeq> /eq 0, /then

*endif
*remark MATRIX.DATA dataset not found in FUNLIB

33-3

Sectlon 33: FIND

533.2 THE FIND DATASETS DIRECTIVE

Purpose

Returns information on multiple datasets.

Format

*FIND DATASETS Dataset-id [IBECIN=dsnOl
[/NSEq=Macro-namel [/SEq=Macro-namel

Synonyms

FIND and INQUIRE are equivalent directive verbs.

Required Parameters

I Dataset-id

Phrase qualifiers

BEGIN-dsnO

NSEQ=Macro-name

SEQ-Macro-name

Identifies the datasets to be queried in the form
ldi, Dataset-name

where Idi is the library’s LDI, and Dataset-name usually contains
masking characters or cycle range specifications.

Begin dataset search at sequence number dsn0S-l.

If omitted, search starts at sequence number 1.

Not implemented.

Return the dataset sequence numbers of up to maz-seg datasets
that match the input name, as found in a forward library search,
and assign these values to macrosymbol named after qualifier SEq.
This macrosymbol, of type I, is defined by the error-free execution
of the directive. The macrosymbol will be an array if qualifier MSEQ
is given, as it usually the case; otherwise, it will be an ordinary
one. If no dataset is found, only one value with the value zero is
created. If the library irlentificathn or dataset name is incorrect,,
no macrosymbol is created.

Description

This directive is designed to search a library for all datasets that match a given (usually
masked) name. Search starts at the first dataset unless this is overridden with a qualifier,
and proceeds until a maximum number of datasets is found or the end of the dataset table
reached. The information is returned in the form of indirectly defined macrosymbols.

I 33-4

$33.3 T H E FIND LIBRARY DIRECTIVE

L

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

NICE-DMS Interface and Macrosymbol.

Status

Experimental; format subject to change.

REMARK 33.3

Remarks 33.1 and 33.2 also apply here.

$33.3 THE FIND LIBRARY DIRECTIVE

Purpose

Returns information on specific data library.

Format

*FIND LIBRARY ldi [/FORM=Mucro-nume] [/NAME=Macro-narnc] I [INODS=Macro~raarnel

Synonyms

FIND and INQUIRE are equivalent directive verbs.

Required Parameters

ldi

Phrase qualifiers

FORM= Macro - na rn e

NAME=Macro-name

NODS=Macro-name

Logical Device Index of the data library to be queried.

Return library form identifier as value of macrosymbol specified
after qualifier FORM. This macrosymbol, of type A , is defined by
an error-free execution of the directive. The value returned is the
string DAL, G A L 8 0 or CAL82. If ldi is not connected to a library or
is out of range, no macrosymbol is created.

Not implemented.

Return number of datasets as value of macrosymbol specified after
qualifier NODS. This macrosymbol, of type I, is defined by the error-
free execution of the directive. The returned count includes deleted
datasets. If ldi is not connected to a library or is out of range, no
macrosymbol is created.

Section 33: FIND

Description

This directive is used to request general information pertaining to a specific data li-
brary identified by its LDI. The information is returned in the form of indirectly defined
macrosymbols.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP subsystem(s) required:

NICE-DMS Interface and Macrosymbol.

Status

Experimental; format subject to change.

REMARK 33.4

Macros created by this directive will be semilocal or local in scope if a single equal sign appears
after the qualifier. To force global scope, use two equal signs, as in the Example below.

REMARK 33.5

Remarks 33.1 and 33.2 also apply here.

EXAMPLE 33.2

*OPEN/OLD 7,INLIB
*FIND LIBRARY 7 /FORM==INLIB-FORM /NODS==INLIB-DSETS

533.4 THE FIND LIBRARIES DIRECTIVE

Purpose

Return information about all active libraries.

Format

1 * FIND LIBRARIES [/ LD I = Adac ro - nam e1 [/ 11 0 L= Ala c ro- narn e] 1

Synonyms

I FIND and INQUIRE are equivalent directive verbs.

I Phrase qualifiers
I LDI=Mucro_narne Return the Logical Device Indices of all libraries currently open and

assign them as values of the entries of a macrosymbol array whose I

33-6

533.5 THE FIND RECORD DIRECTIVE

name is specified after qualifier LDI. The mamosymhol entries will
be of type I. If no libraries are open, the macrosymhol is not dcfined.

NOL=Macro-narne Return number of open libraries as value of macrosymbol specified
after qualifier NOL. This macrosymbol, of type I, is defined by the
directive execution. If no libraries are open the macrosymbol is
assigned the value zero.

Description

The NICE-GAL manager is queried as to the number of open libraries and their LDIs.
The requested information is returned in the form of indirectly defined macrcl.aymbols.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP subsystem(s) required:

NICE-DMS Interface and Macrosymbol.

Status

Experimental; format subject to change.

REMARK 33.6

R.ernarks 33.1 and 33.2 also apply here.

533.5 THE FIND RECORD DIRECTIVE

Purpose

Return information on indexed record.

Format

I *FIIID RECORD ldi , dsti,irec [lSIZE=Macro twtne] I
Required Parameters

ldi

dsn

irec The record index.

Logical Device Index o f p s i t i a n d library file.

The sequence number of the owner dataset.

33-7

Sectlon 33: FIND

Phrase qualifiers

I SIZE=Macro-name On search completion, create integer macrosymbol named as qnal-

~

ifier parameter, and assign the record size in words to it. If the
record was not found, assign the value zero.

I Description

For positional libraries the FIND RECORD directive is used to search for an indexed record
and to return size information on it. The information is returned in the form of an indirectly
defined macrosymbol.

Processor Reference

I This directive may be submitted through the message entry point CLPUT.

I

CLIP Subsystem(s) Required

NICE-DMS Interface and Macrosymbol.

Status

Experimental; format subject to change.

533.6 THE FIND RECORD DIRECTIVE FOR NOMINAL LIBRARIES

Purpose

Returns information on named record key.

Format

*FIND RECORD -KEY Record-ke y-id [/CY C= Mac ro-name] [/DIM=Mac ro -nam e]
/ /NOR= Mucro - num el / S I ZE= Mac ro - nam el I /TYPE= Macro - nam e]

Required Parameters

Record-ke y-id

Phrase qualifiers
I
I CYC= Macro-name

Identifies the nominal record key to be queried. The owner dataset
may be specified by name or by sequence number:

ldi, Dataset-name, Key

ldi, dsnl , Key

Returns a macrosymbol with Macro-name111 equal to the low cycle
number and Macro_name[2/ equal to the high cycle number. If
the library identification or dataset specification is incorrect, the
macrosymbol is not defined.

33- 8

$33.6 THE FIND RECORD DIRECTIVE FOR NOMINAL LIBRARIES

DIM= Macro-name

N OR=Mac to-nam e

SIZE= Macro-name

TYPE= Type

Description

This directive is used

Returns a macrosymbol with Macro-name equal to the "first matrix
dimension." If the library identification or dataset apcrifirat,ion is
incorrect, the macrosymbol is not defined.

Returns a macrosymbol with Macro-name equal to the number of
records. If the library identification or dataset specification is in-
correct, the macrosymbol is not defined.

Returns the record size in logical units as the value of the macrosym-
bo1 specified after the qualifier SIZE. If the key is not found, return
zero. The macrosymbol, of type I, is defined by error-free execution
of the directive. If the library identification or dataset specification
is incorrect, the macrosymbol is not defined.

Returns the record type code letter (A, I, etx.) as the value of the
macrosymbol specified after the qualifier TYPE. If the record key
is not found, return U. The macrosymbol, of type A, is defined by
error-free execution of the directive. If the library identification or
dataset specification is incorrect, the macrosymbol is not defined.

to inquire about record keys in a nominal dataset. Information of
interest includes low and high cycles, number of records, size and type. The information
is returned as value of indirectly defined macrosymbols.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

NICE-DMS Interface and Macrosymbol.

Status

Experimental; format subject to change.

c

REMARK 33.7

Remarks 33.1 and 33.2 also apply here.

33-9

Sectlon 33: FlND

THIS PAGE LEFT BLANK INTENTIONALLY.

4

33-10

4

P

A

.

34
FLUB

34-1

Section 34: FLUB

534.1 THE FLUB DIRECTIVE

Purpose

Flushes buffers of a data library or all active libraries.

Format

I I

Optional Parameters

ldi If positive, Logical Device Index of library file to be flushed (1-16).
If omitted (or zero), all active libraries are flushed.

Description

This directive forces core-resident library tables flagged as altered by the data manager
to be written to the library file. This “flushing” operation ensures conformity of library
contents and protects against catastrophic run aborts. The operation may involve a specific
library or all active libraries. It does not apply to scratch libraries or to libraries opened
in read-only mode.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

NICE-DMS Interface.

Status

Operational.

EXAMPLE 34.1

Flush library attached to Logical Device Index 6:

*FLUB 6

34-2

.

.

35
FOPEN

Sectlon 35: FOPEN

$35.1 THE FOPEN DIRECTIVE

Purpose

Opens a card-image file connected to a FORTRAN unit.

Format

I *FOPEN unit.Filenanze [/NEW] [/OLD] I
~ ~~ ~ -~ ~_______ ~~

Required Parameters

unit Logical unit number assigned to the file opened by this directive.
If omitted, 1 is assumed. Some care should be exercised to avoid
clashing with other logical units in use by CLIP or the Processor.

Name of the file to be opened. There are no default names. Filename

Word Qualifiers

NEW Open a new file.

0 LD Open an existing file.

If neither NEW or OLD is specified, a new file.

Description

The FOPEN directive opens a new, sequential access, card-image file through a FORTRAN
OPEN statement, and connects the file to a specified logical unit. This file is often used to
receive print information produced by directives such as PRINT or SHOW, or coded database
information produced by the UNLOAD directive. The file may be printed, rewound or closed
using the FPRINT, FREWIND and FCLOSE directives.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

None.

Status

0 per at ional.

I

35-2

t

$35.1 THE FOPEN DIRECTIVE

EXAMPLE 35.1
The following example (also given for FCLOSE) illustrate typical use of FOPEll in an interactive
session:

*POPEN 11, TOC .LIS
*OPEN 1. PROBLEH . GAL
*TOC/OuT-l2 1
*FCLOSE 12
*TYPE TOC . LIS

For uses in conjunction with database transfer operations, see the sections on LOAD and
UNLOAD.

35-3

Sectlon 35: FOPEN

.

THIS PAGE LEFT BLANK INTENTIONALLY.

35-4

36
FPRINT

36-1

Sectlon 36: FPRINT

$30.1 THE FPRINT DIRECTIVE

Purpose

Prints lines of card-image file connected to a FORTRAN unit.

Format

I *FPRINT unit, [nl I
Required Parameters

unit

n

Logical unit number assigned to the file to be printed. Normally
established using a FOPEN directive.

Number of lines to be printed; default one. Print starts at the
current location of the file.

Description

The FPRINT directive prints lines of a new, sequential access, card-image file connected
through a FORTRAN OPEN statement. This is useful for previewing a connected text
file.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

None.

Status

Operational.

EXAMPLE 36.1
The following example illustrates typical use of FPRINT for an interactive session:

*FOPEM/kJEV 12,TOC.LIS . open new text file
*OPEN 2, DATA.LIB
*TOC/OUT=l2 2 .
*FREWIND 12 . rewind it
*FPRINT 12,lO . print firrt 10 liner
*FPRINT 12,20 . print next 20 liner

write TOC of library 2 to text file

30-2

37
FREWIN

37-1

Section 37: FREWIND

$37.1 THE FREWIND DIRECTIVE

Purpose

Rewinds file connected to a FORTRAN unit,

Format

r *FREWIND [unit] I
Required Parameters

unit Logical unit number of the file to be rewound. Normally established
using a FOPEN directive.

Description

The FREWIND directive rewinds a sequential access, card-image file connected through an
FOPEN directive. This is occasionally useful in conjunction with FPRINT.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

None.

Status

Operational.

EXAMPLE 37.1

The following example illustrate typical use of FREWIND in an interactive session:

.

*FOPEN 12,TOC.LIS . opens TOC.LIS and connects to unit 12
*FPRINT 12.60 . print first 50 lines
*FREWIND 12 . rewind *FREWIND 12.10 .
*FCLOSE 12 . close

print first 10 lines again

37-2

I .
37a

GAL2MAC

37a--1

Section 37a: GALlMAC

537a.l THE GALPMAC DIRECTIVE

Purpose

Defines a Macrosymbol with a value obtained from a GAL Dataset.

Format

.

*GAL2MAC /Name{= I ==}Macro~yrnbol
[/ Ioff=iof l [/Maxn=maz items] Record id

Abbreviation

*GALZMAC may be abbreviated to *G2M.

Required Parameters

Name(= I ==}
Macros ymbol

Record-id

Phrase Qualifiers

Type=t ype

Iof f =io#

Maxn= max-items

The name of a Macrosymbol that will receive the values of the GAL
Datase t (s) extracted.

Identifies the record(s) to be extracted. The identification consists
of three items separated by comnias. The first item is the Logical
Device Index (LDI) of the source data library, which must be open
at the time the *GAL2MAC is issued. The second item identifies the
owner dataset by name or by sequence number. The third item is
the record index (for one record) or a record index range (for several
records) :

ldi, Dataset-name, irecl[: irecZJ

ldi . dsn irecl[: irecZ1

If the first form is used, the dataset name may contain masking and
cycle-range specifications.

Enter the type of the macrosymhol. See 54 for a description of
macrosymbol types. If t.ype not specified, the record is checked and
type returned; if non-existent, nothing written.

Integer offset by ioflin the record to be read. log is equivalent to
IOFF in the GMGETx calling sequence. See the GAL-DBM Manual
59.5. .

Read only maz-items from the record. Note that, max-items is used
for the value of I1 in the call to GMGETx and LElJCTH is a qualifier, so
max-items can be a positive or negative number. See the GAL-DBM

.
37a-2

537a.l THE GALZMAC DIRECTIVE

Manual 59.5. Maz-items is limited to 100 integers or single precision
floating numbers, 50 double precision floating point ntimhers, or 400
characters .

I -
Description

This directive is used to move data from nominal GAL Datasets into CLIP macrosymbols.

CLIP Subsystem(8) Required

Macrosymbol and NICE-DMS Interface.

Status

Operational.

REMARK 37a.l
The converse operation is performed by the *MACZGAL directive.

EXAMPLE 37a. l

Read three values from the record DENSITY from dataset 1 on GAL library 1 and create the
three macrosymbols DENSITY [11, DENSITY 121, and DENSITY 131.

*g2m /Narr=DENSIfY 1.1 .DENSITY. 1 : 3

I
I .

37a-3

Section 37a: GAL2MAC

THIS PAGE LEFT BLANK INTENTIONALLY.

37a-4

4

GENERATE

38 -1

Section 38: GENERATE

938.1 THE GENERATE DIRECTIVE

Purpose

Generates subsequent commands through an item incrementation mechanism.

Format

I *GENERATE [/ k ~ [increment~tstI J

Optional Parameters

inc rement-last A list of numeric increments. The list must not exceed 100 items.
These increments are considered in one-to-one correspondence with
numeric items in the previous ordinary command, character strings
being ignored for purposes of this correspondence. Omitted trailing
increments are considered zero.

Word Qualifiers

k The number of commands to be generated (default 1). If it appears
it must follows the directive keyword.

Description

The GENERATE directive causes subsequent command(s) to be generated through a numeric-
item incrementation mechanism. It is sort of a relic of the first CLIP implementation (1969)
at Boeing, but once in a while it comes in handy.

The formal description is rather messy, but the example below should be sufficient to
illustrate how it works.

CLIP Subsystem(s) required

None.

Status

Operational since 1969.

REMARK 38.1

In previous versions of CLIP and its LODREC ancestor, this directive was called DO. This name
now applies to the directive that introduces a FORTRAN-like loop.

REMARK 38.2

This directive cannot be used to generate directives.

38-2

538.1 THE GENERATE DIRECTIVE

REMARK 38.3
Generated commands aw not printed even if romrriand echo is on, because the generat ion procrrds
directly at the Decoded Item Table level. The generation process may be visualized, however, by
turning on the “Decoded Command” echo option by saying *SHOW ECHO = DEC.

‘I

EXAMPLE 38.1
The following two lines

SET XYZ = 1.0, 2 .0 , 3 . 0
*GEN /4 -1. 1.6

are equivalent to the five lines

SET XYZ = 1.0, 2 . 0 , 3.0
SET XYZ = 0 . 0 . 3 . 5 , 3.0
SET XYZ = -1.0. 6 . 0 , 3.0
SET XYZ = -2.0, 6 .5 , 3.0
SET XYZ = -3.0, 0 . 0 , 3.0

The GENERATE directive has generated the last 4 SET XYZ commands.

38--3

Sectlon 38: GENERATE

THIS PAGE LEFT BLANK INTENTIONALLY.

38--4

39
GET

39 1

Sectlon 39: GET

839.1 THE GET TEXT-DATASET DIRECTIVE

Purpose

Extracts Text Dataset(s) to card-image file.

Format

*GET TEXT-DATASET Filename = Datasetid I

Required Parameters

Filename The name of a FORTRAN card-image file that will receive the
contents of the Text Dataset(s) extracted. This file is created by
execution of the directive.

Dat use t -id Identifies the Text Dataset to be extracted by the Logical Device
Index followed by the dataset name or sequence range:

ldi. Dataset-name

ldi, d s n l [: dan21

The first form specifies that Text Datasets in library ldi whose name
matches Dataset-name are to be extracted. The name may contain
masking or cycle range specifications.

The second form specifies that Text Datasets in library ldi whose
sequence number falls in the range dsnl through dsnZ (inclusive)
are to be extracted. If dsn2 is omitted, danZ = dsnl is assumed.

Description

This directive is used to extract one or more Text Datasets resident in a positional data li-
brary. The output is written to a card-image FORTRAN file, which is created by execution
of this directive.

CLIP Siihaystem(s) Required

NICE-DMS Interface.

Status

Operational.

REMARK 39.1

The converse operation is pcdorrricd by the PUT TEXT-DATASET directive.

39-2

c

I

539.2 THE GET TEXT-GROUP DIRECTIVE

EXAMPLE 39.1

Extract Text Dataset CARD. DECK from library 7 to output, filr CARDS. DCK:

*get text carde.dck = 7,card.deck

I -

?

EXAMPLE 39.2

Extracts all Text Datasets in data library 12 whose extension is DECK and put the output in file
BIGDECK:

get text bigdeck = 12..deck

$39.2 THE GET TEXT-GROUP DIRECTIVE

Purpose

Extracts Text Group(s) to card-image file.

Format

I *GET TEXT-CROUP Filename = Text-group-id I

Required Parameters

Filename The name of a FORTRAN card-image file that will receive the Text
Dataset contents. This file is created by execution of the directive.

Text-group-id Identifies the Text Group(s) to be extracted. The applicable forms
are:

ldi, d s n l l : dsn21, Key
ldi , Dat ase t -name, Key

The first form specifies that Text Groups named Key in library ldi
that belong to datasets whose sequence number range dsnl through
dsn2 (inclusive) are to be extracted. If dsn2 is omitted, dsnZ = dsnl
is assumed. K e y may contain masking characters.
The second form specifies t,hat Tcxt. Grotips named KPYI t h a t re-
side in library idi and belong to datasets whose name matches
Dataset-name are to be extracted. The dataset name may contain
rnasking or cycle range specifications. Key may contain masking
characters .

Description

This directive performs essentially the same functions as the GET TEXT-DATASET, but for
Text Groups.

39-3

Sectlon 39: GET

CLIP Subsystem(s) Required

NICE-DMS Interface.

Status

Operational for single Text Group only.

REMARK 39.2

The converse operation is performed by the PUT TEXT-GROUP directive.

EXAMPLE 39.3

Extract Text Group CONTENTS that resides in dataset NODAL.COORDINATES.4 of library 22 into
output file CONTENTS. LIS:

*get text contents.lis = 22. nodal.coordinatee.4. contents

39-4

40
HELP

40-1

Sectlon 40: HELP

$40.1 THE HELP DIRECTIVE

Purpose

Lists topic-qualified sections of a NICE help file.

Format

~ [*HELP [Topic [Subtopic . . .] I 1 ~

Optional Parameters

Topic ... A list of topics that specifies which segment of the current help file
is to be listed. If omitted, the "root" segment is listed.

Description

The HELP directive causes topic-qualified segments of NICE-formatted help files to be
listed. The help file is designated through the SET HFILE directive. The default help file
is the one that explains CLIP directives. For details arid application examples see 56.10
and Appendix H of the CLIP Reference Manual, Volume 111.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

None.

Status

Operational.

EXAMPLE 40.1

*HELP ADD

40-2

41
IF

41.1

Sectlon 41: IF

541.1 THE LABELED IF DIRECTIVE

Purpose

Conditionally branch to target label on logical expression.

Format

Required Parameters

I * I F logical-expression [: Label] I

logical-expression An expression that evaluates to integer 0 for FALSE or 1 for
TRUE. More generally, a nonzero value is also interpreted as TRUE.
The expression is usually constructed through ordinary or logical
macrosymbols (see $4 and examples).

Optional Parameters

Label The name of the target label. Control passes to the target label (or,
more precisely, the command that follows it) if the logical expression
is TRUE; otherwise the next command is processed.
If the label is omitted, a return from procedure is assumed.

Description

When an IF directive of this type is encountered, CLIP evaluates the logical expression. If
the value is TRUE (integer one or, more generally, any nonzero integer) the “next dataline
to read” counter in the command source stack is set to that associated with the label. If
the expression is FALSE, nothing happens and the next dataline is fetched.

Dataline Restrict ions

This directive must be in a dataline (or several datalines) by itself. The label must be in
t,he same line as the IF . If the logical-espression is so long that it requires continuation
lines, you should place the label immediately after the IF.

Operational Restrict ions

Works only inside a command procediire.

Processor Reference

Not applicable.

CLIP Subsysteni(s) Required

Command Procedure.

.

Status

0 perat ional.

41--2

$41.2 THE BLOCK IF DIRECTIVE

REMARK 41.1
The present laheled IF directive is an extension of the previoufi IF directive, which only accepted
very limited arithmetic expressions. The old forms will work but procedure writers are encouraged
to switch to the more FORTRAN-like logical expression forma.

4

EXAMPLE 41.1
This illustrates a simple arithmetic comparison:

*IF < <pi> /gt 3 . 1 > :E1356

where PI is the built-in macro that defines T to 16 decimal places. Since 1~ > 3.1, the expression
is TRUE and control will pass to the command that follows label B1256.

EXAMPLE 41.2
This is a more complex expression:

This says: if the value of the Chree numeric macrosymbols X1, X2 and X3 is nonnegative, jump to
GO-AHEAD. The expression may be put in more readable form by defining three logical switches:

*def/i xlnonneg = < <xi> /ge O>
*def/i x2nonneg = < <x2> /ge O>
*def/i x3nonneg = < <x3> /ge O>
*IF < <xlnon,neg> /and Cx2nomeg> /urd cx3aonn.g> > :GO-AHEAD

Which form is better is largely a matter of personal preference.

REMARK 41.2
It is generally best to avoid complicated expressions as these are harder to visualize in the debug-
ging phase.

EXAMPLE 41.3
If you have a logical expression that involves both AHDs and ORs, be sure bo make your intentions
clear by proper nesting. For example:

is not the same as

*IF < <xlnomeg> /or <<x2nonneg> /and <x3nonnei>> > :CO-AHEm

EXAMPLE 41.4
The following form is for instructional purposes only:

*IF I

Can you guess what happens? Since 1 is TRUE, control transfers to the implied label, which is the
end of the procedure. So in fact the above i s equivalent to a +RET1IIuI !

4 1-3

ORlGiNAL PAGE IS
OF POOR QUALITY

r .

Section 41: IF

541.2 THE BLOCK IF DIRECTIVE
P urp oee

Introduces an IF-THEN-ELSE block.

Format

*IF logical-expression /THEN

Required Parameters

logical-expression An expression that evaluates to integer 0 for FALSE or 1 for TRUE.
More generally, a nonzero value is also interpreted as TRUE.
If the expression is TRUE, control drops to the command that follows.
If the expression is FALSE, control jumps to the next ELSEIF, ELSE
or ENDIF directive that pertains to this IF-THEN-ELSE block.

Description
When the procedure compiler an IF encounters a directive of this form, it transforms it
to a labeled IF that transfers to a generated label. The THEN qualifier is removed and a
tag appended to the compiled IF to let CLIP known that the normal interpretation of the
labeled IF (jump if TRUE) should be reversed (jump if FALSE).

Da taline Restrict ions

This directive must be in a dataline (or several datalines) by itself. The THEN qualifier
must be in the same line as the IF. If the logical-ezpression is so long that it requires
continuation lines, you should place the THEN immediately after the IF.

Operational Restrictions

Works only inside a command procedure.

Processor Reference

Not applicable.

CLIP Subsystem(s) Required

Corn man d P rocerl 11 re.

Status

Operational.

REMARK 41.3

If you forget the qualifier THEH, the procedure compiler assumes that this is a labeled I F with
implied “exit of procedure” label, and you are likely to get some nasty error messages later. The
same thing will occur if the THEN is on a continuation line; see Dataline Restrictions above.

41-4

~

! .I

541.2 THE BLOCK IF DIRECTIVE

ORIGINAL PAGE IS
OF POOR QUALITY EXAMPLE 41.5

Consider the procedure

. *proc blockif (value=lO)
* i f < [value] /gt 0 > /then

*e loe i f < [value] /eg O> /then

*e lse

*endif
*end

*rem The decimal log of [value] i m <loglo([v ~ l u e])>.

*rem The input <value> ir zero; i t a log IB - inf lnf ty .

*rem The input <value> i s negative; it has no real l a g .

If after compilirig you say *CALL BLOCKIF (VALUE=2) you should get the printout

The decimal l o g of 2 ie 3.010299966039815D-01.

For other examples, see $6.

4 1 5

Sectlon 41: IF

THIS P A G E L E F T BLANK INTENTIONALLY.

.

C

41-6

JUMP

42-1

Sectlon 42: JUMP

542.1 THE JUMP DIRECTIVE
Purpose

Transfers control to specified procedure label.

Format

Optional Parameters

Label The target label. If omitted, control transfers to the end of the
procedure (equivalent to a RETURN directive).

Description

This directive unconditionally transfers control to a specified target label in a procedure.
The dataline that follows the label line will be processed next.

Operational Restrictions

Works only inside a command procedure.

Processor Reference

This directive may be submitted through the message entry point CLPUT, although such
an event would be highly unlikely.

CLIP Subsystem(s) Required

Command Procedure.

Status

Operational.

REMARK 42.1

Note that CLAMP is a truly structured language. It has no GOT0 statement.

EXAMPLE 42.1

Unadorned JUMP:
*JUMP :LOOP

EXAMPLE 42.2

More readable form with “noise” word:

.

+JUMP TO :LOOP

42-2

c

~~ ~~

542.1 THE JUMP DIRECTIVE

EXAMPLE 42.3

Conditional form:

. If EXECUTE = 'YES' jump t o :EXECUTE e lre ex i t procedura

c i fo lre (<axecute> ; yor ; *jump to :executa ; *jump)>

The unlabeled JUMP in the fourth macro argument plays the same role as a REl".

42-3

Section 42: JUMP

THIS PAGE LEFT BLANK INTENTIONALLY.

.
42-4

I L

I

I

I

43
LIST

.

Section 43: LIST

543.1 THE LIST FILE DIRECTIVE

Purpose

List card-image file on CLIP print output file.

Format

Required Parameters

Filename The name of the card-image file to be listed. Masking is not per-
mitted.

Word Qualifiers

HEAD Write a header line that gives the name of the file.

Phrase qualifiers

OUT= unit Write output to logical unit unit. If not given, output is written to
the CLIP print file (normally logical unit 6).

Description

The LIST-file directive lists the contents of a card-image source file. Output goes to
the CLIP print output file (that shown as Cpr: in response to a SHOW UNITS directive)
unless overridden by the OUT qualifier phrase. The file is accessed by a FORTRAN OPEN
statement. Read-only mode is used if allowed by the host computer. Once the listing is
completed, the file is closed.

Operational Restrict ions

You cannot list files that are currently open for write, or files where read access is denied
by the owner. This directive should not be on unformatted or direct-access files (a "Cannot
open file" error message will appear).

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

None.

.

Status

Operational.

43-2

$43.2 THE LIST T E X T DATASET DIRECTIVE

REMARK 43.1

The print record length is normally limited to 80 characters. This i R the rlefmlt. line print width,
which may be increased up to 132 characters, if desired, through the SET WIDTH directive.

EXAMPLE 43.1

*LIST PROC : FORPRC . MSC

File PROC:FORPRC.MSC (a VAX filename) is to be listed.

543.2 THE LIST TEXT DATASET DIRECTIVE

Purpose

List Text Dataset on CLIP print file.

Format

I * L I S T Ted-dutaset-id [/ H E A D] [/OUT=unit] I

Required Parameters

Test-datuset-id Identifies the Text Dataset(s) to be listed. The dataset may be
specified by name or sequence number:

ldi, Dataset-name
ldi, dsnl[: dsn21

The first form specifies that Text Datasets in library ldi whose name
matches Dutuset-name are to be listed. The name may contain
masking or cycle range specifications.
The second form specifies that Text Datasets in library Idi whose se-
quence number falls in the range dsnl through dsn2 (inclusive) are
to be listed. If dsn2 is omitted, dsn2 = dsnl is assumed. Datasets
that are not of text. tvpe are ignored.

Word Qualifiers

HEAD Write a header line that gives the dataset name.

Phrase qualifiers

OUT=unit Write output to logical unit unit. If not given, output goes to the
CLIP print file (normally logical unit 6).

43-3

Sectlon 43: LIST

Description

This form of the LIST directive is similar to the list-file form, but the source is a Text
Dataset that resides on an active positional (DAL or GALSO) library.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

NICE-DMS Interface for listing Text Datasets or Text Groups.

Status

Operational.

REMARK 43.2

Remark 43.1 also applies here.

EXAMPLE 43.2

*LIST/H 1,4
*LIST/H 1, *

543.3 THE LIST TEXT GROUP DIRECTIVE

Purpose

List Text Group on CLIP print file.

Format

I *LIST Ted-group-id [/HEAD1 [/OUT=unitl I
L I

Required Parameters

Te zt - group -id Identifies the Text Group(s) to he listed. The applica1)lct forms are:

ldi. Dataset-name, Key

Idi, dsnl [: dsn21, Key

The first form specifies that Text Groups named Key that re-
side in library Idi and belong to datasets whose name matches
Dataset-name are to be listed. The dataset name may contain
masking or cycle range specifications. Key may contain masking
characters.

4

43- 4

543.3 THE LIST T E X T GROUP DIRECTIVE

Word Qualifiers

HEAD

The second form specifies that Text. Groups named Key in library Mi
that belong to datasets whose sequence number range danl ttirongh
dsnd (inclusive) are to be listed. If dsnb is omitted, dsnb = dsnl
is assumed. Key may contain masking characters.

Write a header line that gives the library index, dataset name and
Text Group name.

Phrase qualifiers

OUT=unZt Write output to logical unit unit. If not given, output goes to the
CLIP print file (normally logical unit 6).

Description

The LIST Text Group directive causes CLIP to search the library for the owner da.taset(s)
specified in it. For each dataset, the Record Access Table is searched for the given Text
Group name (= Record Group key). When found, the equivalent of the "get text" opera-
tion is invoked with the CLIP print unit (or the OUT-specified unit) aa output. The library
must be opened at the time the LIST is requested and is not closed.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

NICE-DMS Interface.

Status

Operational except for Key masking.

REMARK 43.3

Remark 40.1 also applies here.

EXAMPLE 43.3

*LIST/H 1.4.CONTENTS
LIST 2,,ABSTRACT /OUT=2

I *
i

.
43-5

Sectlon 43: LIST

THIS PAGE LEFT BLANK INTENTIONALLY.

43-0

I -

.
LOAD

44-1

44

Section 44: LOAD

$44.1 THE LOAD DIRECTIVE

Purpose

Internalize nominal records from UNLOAD-created text file to data library.

Format

*LOAD ldi [[, Dalaset-id] , Record-id = unit

Optional Parameters

ldi Logical Device Index (LDI) of the library that will receive the load
data. Must be open at the time the directive is issued, have write
permission, and be of GAL82 (nominal) format.

unit Logical unit number of the text file containing loading data. This
file is normally created by an UNLOAD directive, but not necessar-
ily on the same computer. The file must be opened with the old
option before the LOAD directive is issued. The unit-file connection
is usually performed by an FOPEN directive (see examples). The
file is rewound and scanned until end of file, but is not closed (see
Description).

Optional Parameters

Dat aset -id A generally masked dataset name that may be used to select
datasets to be loaded. If omitted, datasets in the load file are not
filtered.

Record-id A generally masked record name that may be used to select records
to be loaded. If omitted. records names are not filtered.

Description

The load file is rewound. and then scanned forward un t i l t h e end nf file is detected. When
a dat,aset name is encountered, CLIP tests when it is to be loaded. If so, it checks the
data library for a match; if none a new dataset is installed. Then all subordinate records
are examined. If a record is to be loaded, CLIP checks whether the record key already
exists. If it exists and the new record has the same length and data type, it is overwritten
or appended. If the key does not exist,, it is instmalted and records are then appended.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

44-2

544.1 THE LOAD DIRECTIVE

CLIP Subsystem(s) Required

NICE-DMS Interface,

Status
I f Operational.

EXAMPLE 44.1
Load all database data in file RESPONSE. VAL into data library RESPONSE. LIB:

*openhew I ,responee . lib
*fopen/old 3.reeponee.val
*load I = 3
*fclore 3
*toc ; *rat

The use of I and 3 for LDI and logical unit, respectively, is incidental.

EXAMPLE 44.2
As above, but now load only datasets whose name starts with H into existing data library
RESPONSE. LIB:

*open 1,reeponse.lib
*fopen/old 3,responee.val
load I.H = 3
*fcloee 3
* t o c ; *rat

44-3

Sectlon 44: LOAD

t

THIS PAGE LEFT BLANK INTENTIONALLY.

44-4

45
f

LOCK

45-1

Sectlon 45: LOCK

$45.1 THE LOCK DIRECTIVE

Purpose

Change locking status of dataset(s).

Format

I *LOCK Dataset-id = Lock-code I

t

*

Status

Not implemented.

45-2

.

LOG

46-1

Section 46: LOG

$46.1 THE LOG DIRECTIVE

P urp 0 8 e

Initiates command logging.

Format

Optional Parameters

Filename Name to be given to the command log file.
If omitted, the name CLIPLOG .DAT is assumed on the VAX running
under VAX/VMS; CLIPLOG on other systems.

Word Qualifiers

ALL Log lines read from all command source stack levels.
If this qualifier is omitted, only lines entered at the command source
stack root level are logged; this is precisely what is needed in ap-
plications in which the log file is to be ADDed in a subsequent run.

Description

This directive opens a new card-image file called the ”command log” file, which is connected
to an internal unit. Subsequent input lines entered from the terminal are copied “as is” to
this file. The logging process may be terminated by an ENDLOC directive. Refer to $3.4 for
additional details.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

Dataline Restrirtions

This directive must be in a dataline by itself.

CLIP Subsystem(s) Required

None.

Status

Operational.

46- 2

I

EXAMPLE 46.1

Consider the convemational qucnce

*log nowinpot .at
*8bd OldinprSt .at
O l V O e I p . t i O M
print romltr

*typo norlnput.&t
*Ondl06

~

546.1 THE LOG OlRECTlVE

The TYPE directive should show that file NEWINPUT contains the following 3 linea:

*add oldinput
rolvo oquationr
print r o m l t ~

Note that the lineb from OLDINPOT are not logged; only the ADD directive.

46-3

~

Section 46: LOG

THIS PAGE LEFT BLANK INTENTIONALLY.

46-4

MAC

46a-1

Section 46a: MAC2GAL

540a.l THE MAC2GAL DIRECTIVE

Purpose

Writes a Macrosymbol value or Macrosymbol values to a nominal GAL Dataset.

Format

*MAC2GAL /Name{= I ==}Macrosymbol [/Type=type]
[/ Ioff =ion [/Maxn=rnaz items3 Record-id

Abbreviation

*MAC2GAL may be abbreviated to *M2G.

Required Parameters

Name{= I ==}
Macros ym bo1

Record-id

Phrase Qualifiers

Type=type

Iof f =:off

Man= maz-items

The name of a Macrosymbol that contains the vslue(s)
to be written into a GAL Dataset.

Identifies the record(s) to be written to. The identification consists
of three items separated by commas. The first item is the Logical
Device Index (LDI) of the source data library, which must be open
at the time the *GAL2MAC is issued. The second item identifies the
owner dataset by name or by sequence number. The third item is
the record index (for one record) or a record index range (for several
records) :

ldi. Dataset-name, irecl [: arec21

Ida. dsn irecl[: irec21

If the first form is used, the dataset name may contain masking and
cycle-range specifications.

Enter the type of the macrosymbol. See 54 for a description of
macrosymbol tvpes. Tf type not specifid, the record is checked and
type returned; if nonexistent, nothing is written.

Integer offset by iof in the record to be read. Zofis equivalent to
IOFF in the GMPUTx calling sequence. See the GAL-DBM Manual
$9.9.

Read only maz-items from the record. Note that, maz-items is
used for the value of t? in the call to GMPUTx, so mas-items can
be a positive or negative number. See the GAL-DBM Manual 59.9.

c

46a--2

546a.l T H E MAC2GAL DIRECTIVE

Maz-items is limited to 100 integers or single precision floating ntim-
bers, 50 double precision floating point numbers, o r 4 0 0 characters.

Description

This directive is used to move data from CLIP macrosymbols into nominal GAL Datasets.

CLIP Subsystem(s) Required

Macrosymbol and NICE-DMS Interface.

Status

Operational.

REMARK 46a. l

The converse operation is performed by the *GAL2MAC directive.

EXAMPLE 4 6 a . l

Write the values from the three macrosymbols DENSITY 111, DENSITY [2], and DENSITY(31 into
the record DENSITY in dataset 1 on GAL library 1.

*m2g /Name=DENSITY[l:31 1.1,DENSITY.1:3

46a-3

Section 46a: MACPGAL

L

THIS PAGE LEFT BLANK INTENTIONALLY.

.
40a-4

OPEN

47-1

Sectlon 47: OPEN

547.1 THE OPEN DIRECTIVE

Purpoee

Opens a data library.

Format

*OPEN [ldi, 1 [Filename] [/ Qualifiers] [/LIMIT=limit] [/PRU=zpru]
[/LDI=Macro-name1

Optional Parameters

ldi

Filename

Word Qualifiers

See Table 47.1.

Phrase qualifiers

LIMIT-fimit

LD I= Macro-name

If positive, Logical Device Index (LDI) to be connected to the li-
brary file.
A negative ldi specification is used for special purposes discussed
in the GAL-DMS Manual.
If this parameter is omitted, GAL-DMS searches for the first free
LDI slot. The value selected may be materialized as a macrosymbol
through an LDI phrase qualifier, as explained below.

External name of permanent library file. Should comply with file
naming conventions for host system, as well as with external device
names for the 1/0 manager DMGASP.
For libraries resident on scratch files or blank common, this name
is irrelevant and may be omitted. DMGASP then selects an appro-
priate internal name.

Applies only to newly rreatorl libraries. l k l a r w thc maximrim
capacity of the library device in worh, overwriting a DMGASP-
assumed default (usually x10 million words). Only useful for very
large libraries.

If the open operation succeeds, create an integer macrosymbol
whose name is the qualifier parameter and whose value is the LDI.
Primarily useful in command procedures when parameter ldi is
omitted.

47-2

547.1 THE OPEN DIRECTIVE

Description

This directive opens a data library, and links the file name to a Logical Device Index
(LDI). If the latter is not specified, it may be retrieved in the form of an indirectly created
macrosymbol.

f Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

NICE-DMS Interface.

Status

Operational.

REMARK 47.1

Remarks 32.1 and 32.2 are also applicable here to the LDI qualifier.

EXAMPLE 47.1

Open a new GAL82 library in file PROBLEM. GAL (a VAX file name) and connect it to Logical Device
Index 4:

*OPEN/NEW/NOMINAL 4,PROBLEM.GAL

EXAMPLE 47.2

As above, but now let GAL-DMS pick the LDI, which is to be returned as global macrosymbol
LIBLDI:

*OPEN/NEW/NOMINAL PROBLEM.GAL /LDI==LIBLDI

47-3

Sectlon 47: OPEN

Table 47.1. One-item Qualifiers for OPEN Directive

(a) Qualifiers related to file existence and accessibility

Qualifier Explan at ion

BC

COLD

NEW

Create "core resident library" in blank common.

Conditional: as OLD if file exists, otherwise create NEW.

Create new file, which is to survive upon close.

OLD

PRIVATE

Open existing library file, and allow writes.

Used with NEW: Library file will be privateaccess (Only mean-
ingful on some operating systems e.g., UNIVAC)

Open existing library file read-only.

I

ROLD

SCRATCH Open scratch library, which disappears upon close.

none of above COLD is assumed.

(6) Word qualifiers related to library form

Qualifier Explan at ion

DAL Library will be of DAL form.

GAL80 Library will be of GAL80 (positional dataset) form.

GAL82 Library will be of GAL82 (nominal dataset) form.

NOMINAL Same as GAL82.

none of above If NEW or SCRATCH are specified, created library will be of GAL82
form unless either DAL or GAL80 appears. The same applies if li-
brary creation results from a COLD qualifier. If an existing library
is attached, these qualifiers are ignored.

47-4

$47.1 THE OPEN DIRECTIVE

Table 47.1. One-item Qualifiers for OPEN Directive (Concluded)

(c) Word qualifiers related to f i l e access method

-___- Qualifier Explanation

BIO

FIOS

FIOL

Use Block 1/0 (default if available).

Use FORTRAN 1/0 device with small internal PRU.

Use FORTRAN 1/0 device with large internal PRU.

(d) Word qualifiers related to internal 1/0 operation

Qualifier Explanation

PAGED Use Paged 1 / 0 if buffer declared (GAL only).

47-5

Sectlon 47: OPEN

t

THIS PAGE LEFT BLANK INTENTIONALLY.

47-0

48
PACK

Sectlon 48: PACK

$48.1 THE PACK DIRECTIVE

Purpose

Compress data library removing all deleted datasets.

Format

I *PACK Idi I
Required Parameters .

ldi Logical Device Index of library file to be packed.

Description

This directive packs an active data library. The packed library contains no deleted datasets.
Dataset sequence numbers may change as a result of this operation. GAL performs packing
by copying active datasets to a scratch library, which is copied back (in block mode) to
the original file. The scratch library is then closed.

Operational Restrict ions

The library to be packed must have write permission.

Proceseor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) Required

NICE-DMS Interface.

Status

Operational.

EXAMPLE 48.1

Pack library connected to Logical Device Index 12:

*PACK 12

PRINT

49-1

Sectlon 49: PRINT

$49.1 THE PRINT DATASET-TABLE DIRECTIVE

Purpose

Prints the Dataset Table (E Table of Contents) of a library.

Format

1- *PRINT DATASET-TABLE [Id; [, Dataset-range1 I [/Format1 [/OUT=unit] I

Abbreviations

*PRINT DATASET-TABLE may be abbreviated to *PRINT TOC or *TOC. The last abbreviation
is by far the most commonly used.

Optional Parameters

Ida Logical Device Index (LDI) of the library whose Dataset Table is
to be listed.
If the LDI is omitted or zero, the library with highest LDI (this is
usually the last one open) is assumed.
If the LDI is omitted the Data;set-rcrnge specification must not be
present.

Dataset-range This specification may be used to restrict the Dataset Table listing
to datasets identified by name or sequence number range:

Dataset-name

dsnl [:dsnZl

In the first form, Dataset-name usually contains masking characters
or cycle range specifications. Listing is restricted to datasets that
match this name.
In the second form, listing is limited to datasets whose sequence
number is dsnl to dsn2 inclusive. Having dsn2 < dsnl is permissi-
ble and listing proceeds backwards. If d.9n2 is omitted and dsnl is
positive, only the dsnl-th dataset. is listcd. Tf dsn2 is omitmtted and
dsnl is negative, the last Idsnl(datasets are listed in reverse order.
If the Dataset-range specification is not given, the entire table is
listed.

Word Qualifiers

Format A letter that specifies a display format other than standard, as per
Table 49.1.

49-2

$49.1 THE PRINT DATASET-TABLE DIRECTIVE

Phrase Qualifiers

OUT= unit Write output to logical unit unit. If not given, output to the current
print file (normally logical unit 6) .

Description

This directive is usually issued as *TOC, which historically means Table of Contents of a
positional library (DAL or GAL80). Nominal libraries (GAL82) have a Dataset Table and
several Record Tables, and by extension the name TOC applies to the former.

Operational Restrict ions

Library must be open. Any form is acceptable.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) required:

NICE-DMS Interface.

Status

Operational.

EXAMPLE 49.1

List complete Dataset Table of library at LDI 17 in the standard format:

*TOC 17

EXAMPLE 49.2

As above, but only the last 10 datasets:

*TOC 17,-10

EXAMPLE 49.3

As ahove. hiit restrict, the listing to datmets whose extpnsinn Rtnrtrr with FORCE:

TOC lf,.FORCE*.*

EXAMPLE 49.4

List datasets in range 33 to 49 (inclusive) of library 11 in P (physical) display format and direct
output to logical unit 46:

*toc/p 11,33:49 /out=40

49-3

~

Section 49: PRINT

r

*PRINT RECORD Record -id [/ Format 1 [/M= maz-it e ms J
[/LIST=Option_letters] [/OUT=unitl

Table 49.1. Dataset Table (TOC) Print Formate

Letter Table Disvlay Format

B Brief: shows only dataset name and sequence number.

D Dated: as B plus creation date and time (will also show
last update in a forthcoming GAL-DMS version).

SPAR format. Primarily intended for DAL files. E

M Matrix-oriented format as used by the DALPRO code.
Primarily intended for DAL files.

P Shows physical storage details.

S SPAR: same as E.
- __ ____ - . _ _ -

549.2 THE PRINT RECORD DIRECTIVE FOR POSITIONAL DATASETS

Purpose

Prints contents of record(s) in a positional library.

Format

Abbreviation

*PRINT RECORD may be abbreviated to *PRINT.

Required Parameters

Reeord-id Identifies the tecord(s) to be printed. The identification consists
of three items separated by commas. The first item is the Logical
Device Index (LDI) of the source data library, which must be open

I 49--4

.

f

Word Qualifiers

Format

~~
~~~ - ~~~~ 

~~~~ ~~ 

849.2 THE PRINT RECORD DIRECTIVE FOR POSITIONAL DATASETS

Phrase Qualifiers

M= maz-it ems

LIST= Option-lett e rs

OUT= unit

at the time the PRINT is issued. The second item identifies the
owner dataset. by name or by sequence nrimher. The third item is
the record index (for one record) or a record index range (for several
records):

idi, Dataset-name, ired [: i r e 4
idi, dsn ired [: ire&]

If the first form is used, the dataset name may contain masking and
cycle-range specifications.
Listing the descriptor record of GAL80 files requires special care.

An item print format may be specified as a qualifier. For example,
/F12.6. If the format is not given, record items are printed in
hexadecimal or octal format, depending in the host computer. Some
abbreviated (one-letter) print formats are available and are listed
in Table 49.2.

Limit number of items printed per record to maz-items.

These provide additional control on the appearance of the print. In
alpha test; will be described more fully in downstream versions.

Write output to logical unit unit. If not given, output to the current
print file (normally logical unit 6) .

Description

This directive prints the contents of indexed records in an open positional library (DAL
or GAL80). Records are read into an internal buffer and items printed in string form.

Operational Restrict ions

Library must be open and be of DAL or GAL80 form.

Processor Reference

This directive may be submitted through the message entry point CLPUT.

CLIP Subsystem(s) required:

NICE-DMS Interface.

Status

Operational.

49-5

~

Section 49: PRINT

REMARK 49.1

Explicit format specifications are more import-ant for indexed records than for nominal records,
I because the record type of the latter is retained in the database. There are two other problems

that may lead to unsightly output: mixing items of different type in indexed records is permitted, I
and the same format applies to all records printed.

EXAMPLE 49.5

Print indexed record 3 in dataset NODAL.CONNECTIVITY of library 14 in integer format:

*print record 14,NODAL.CONMECTIVITY,4 /i

EXAMPLE 49.6

Print indexed records 3 to 7 in dataset at sequence number 61 of library 7 in El 1.2 format:

i *print rocord 7.61,3:7 /011.2

49-0

~

$49.3 THE PRINT RECORD DIRECTIVE FOR NOMINAL DATASETS

Table 49.1. Abbreviated Format Specs for PRINT RECORD Directive

Letter Item Print Format

A Alphanumeric (line-oriented, bounded by output line

D Same as lPD24.16
E Same as lPEl2.4
F Same as 1PF12.4
G Same as 1PC12.4
I Same as I12
0
Z

width

Octal; width and availability are machine dependent.
Hexadecimal; width and availability are machine depen-
dent.

549.3 THE PRINT RECORD DIRECTIVE FOR NOMINAL DATASETS

Purpose

Prints contents of record(s) in a nominal library.

Format

*PRINT RECORD Record-id [/Format] [/M=maz-iterns]
[/ L I S T = Option-letters] C/OUT=unitl I .

I I ;

Abbreviation

*PRINT RECORD may be abbreviated to *PRINT.

Required Parameters

Record-id Identifies the record(s) to be printed. The identification consists
of three items separated by comnias. The first item is the Logical
Device Index (LDI) of the source data library, which must be open
at the time the PRINT is issued. The second item identifies the

49-7


~~~ 

Section 49: PRINT 

Word Qualifiers 

Format 

Phrase Qualifiers 

M= maz-it ems 

LIST= Option-letters 

I 

I OUT= unit 
I 

I Description 
I 

owner dataset by name or by sequence number. The third item is 
the name of the record or Record Croup to be printed. 

ldi. Datwet-name , Record-name 
ldi. dsn Record-name 

If the first form is used, the dataset name may contain masking and 
cycle-range specifications. 

An item print format may be specified as a qualifier. For example, 
/F12.6. If the format is not given, record items are printed in 
accordance to the record type. The abbreviated (one-letter) print 
formats of Table 49.2 are also available for named records. 

Limit number of items printed per record to maz-items. 

These provide additional control on the appearance of the print. In 
alpha test; will be described more fully in downstream versions. 

Write output to logical unit unit. If not given, output to the current 
print file (normally logical unit 6). 

This directive prints the contents of named records in an open nominal library (GAL82). 
Records are read into an internal buffer and items printed in string form. 

Operational Restrict ions 

Library must be open and be of nominal (GAL82) form. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) required: 

NICE-DMS Interface. 

Status 

Operational. 

REMARK 49.2 

Explicit format specifications are relatively unimportant for named records. The default format 
usually works well. Note that if you print several records with one directive, the default setting is 
recommended if the records have different types (e.g., integers and reals) because the print routine 
can chose the format according to type. 

c 

49-8 



$49.4 THE PRINT RECORD-TABLE DIRECTIVE 

EXAMPLE 49.7 

Print record LINKS. 32 in dataset NODAL. FREEDOMS of library 14 in default. format: 

*print record 14.NODAL.FREEDOMS.LINKS.32 

EXAMPLE 49.8 

Print Record Group ANGLES. 1 : 24 in dataset at sequence number 61 of library 7 in 612.4 format: 

*print record 7,61, ANGLES. 1 : 24 /e 

549.4 THE PRINT RECORD-TABLE DIRECTIVE 

Purpose 

Print the Record Access Table (RAT) of nominal dataset(s). 

Format 

I *PRINT RECORD-TABLE Dataset-id [/Format] [ /OUT=uni tJ  I 
Abbreviations 

*PRINT RECORD-TABLE may be abbreviated to *PRINT RAT or *RAT. The last abbreviation 
is the most commonly used. 

Required Parameters 

Datas e t - id 

Word Qualifiers 

Format 

4 
Phrase Qualifiers 

OUT= unit 

Identifies the dataset(s) whose Record Table is(are) to be printed. 
The specification may be by name or sequence number range: 

ldi ,  Dataset-name 
ldi ,  dsnl C : dsn21 
ldi 

If the first form is used, the dataset name may have masking and 
cycle-range specifications. If the last form is used, all Record Tables 
in library ldi are printed. 

A letter that specifies a display format other than standard. 
Presently only F, which produces a “fuller” display, is implemented. 

Write output to logical unit unit. If not given, output to the current 
print file (normally logical unit 6). 

. 
49-9 



Section 49: PRINT 

Description 

This directive lists the RAT of one or more nominal datasets. 

Operational Restrict ions 

Library must be open and be of nominal (GAL82) form. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) required: 

NICE-DMS Interface. 

Status 

Operational. 

EXAMPLE 49.9 

Print all Record Tables in library 17: 

*RAT 17 

EXAMPLE 49.10 

As above, but in the full format: 
*RAT/F 17 

EXAMPLE 49.11 
Print the Record Table of dataset MY. DATA in library 9: 

*RAT 9.MY.DATA 

549.5 PRINT DIRECTIVES FOR GAL DEBUGGING 

Purpose 

Print  C.lI,-DhfS interna.1 data  stracttitcs. 

Format 

* P R I N T  Entity-id 

Required Parameters 

Entit y-id One of the following specifications: 

BALL Print internal buffer allocations. 

49-10 



949.5 PKINT DIRECTIVES FOR GAL DEBUGGING 

HEADER ldi Print header of library ldi. 
HASH Idi Print hash table for library ldi. 
DAP 1di.dsn Print Dabaset Access Packet for dataset at sequence 

dsn in library Idi. 
RAP Idi, dsn. imp Print Record Access Packet numbered irup for dataset 

at sequence dsn in nominal library ldi. 
RAHEAD Print Record Header in-core table. 

Phrase Qualifiers 

OUT= unit Write output to logical unit unit. If not given, output goes to the CLIP 
print file (normally logical unit 6 ) .  

Description 

These directives are not for ordinary users since a deep knowledge of the internal workings 
of the global database manager is required for proper interpretation. They are applicable 
to debugging, general troubleshooting and 1/0 optimization. 

Processor Reference 

These directives may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

NICE- D MS Inter face. 

Status 

Operational but availability depends on the master source code extraction keys. 

49-11 



~~ 

Section 49: PRINT 

THIS PAGE LEFT BLANK INTENTIONALLY. 

49-12 



50 
PROCEDURE 

so-1 



Sectlon 50: PROCEDURE 

$60.1 THE PROCEDURE DIRECTIVE 

Purpose 

Initiates the definition of a command procedure. 

Format 

*PROCEDURE Procedure-name [ A  rgument-ltdl 

Required Parameters 

Procedure-name The name of the command procedure. As discussed in $6, this 
name, in conjunction with the last SET PLIB specification, desig- 
nates where the callable procedure element (CPE) will reside. 
Legal procedure names vary according to callable procedure ele- 
ment residence. For example, if the callable procedure element is 
to be an ordinary file, the name must comply with the file naming 
restrictions of the host operating system. If the callable procedure 
element is to be a Text Group, the name must be a legal record 
key, and so on. 

Optional Parameters 

Argument-kt A list of up to 25 formal arguments may follow the procedure name. 
The list format is 

(Argl [= Default-teztll : ArgZ [= DefuulLtezt21 : ... ) 
In this format Argl, ArgZ ... are formal argument names, and 
Default-teztl, Default-teztZ, . . . are optional default-replacement- 
text specificat ions. 
Argument specifications are separated by semicolons. 
The opening parenthesis must be preceded by a blank (else CLIP will 
make it part of the procedure name) 
Formal argtiment names are characters strings of lip tm 16 charac- 
ters; the first character must be a letter. Upper case and lower case 
letters are equivalent. 
Each formal argument may be followed by default text. This text (a 
character string of up to 256 characters) is used as replacement text 
if the formal argument is not explicitly named in the CALL directive 
that subsequently activates the procedure. If the default text for 
an argument is missing, it is considered to be a null string. 
Refer to 56.3 for a detailed explanation of argument passing. 

50-2 



550.1 THE PROCEDURE DIRECTIVE 

Description 

When CLIP detects this directive it enters the directive mode and does not exit until the 
END directive is detected. The procedure body is "compiled" to generate an object version 
known as a Callable Procedure Element (CPE). The callable procedure element may be 
subsequently activated through a CALL directive. The effect of a PROCEDURE definition is 
totally passive as far as the Processor is concerned because the entire process is carried 
out in the directive mode. 

If you define a procedure interactively (only recommended for demonstration pur- 
poses) you will get a Body> prompt until you type an END directive. 

Da t aline Restrict ions 

This directive must be in a dataline by itself. If continued into several lines (common) the 
last line should not be followed by another command. 

0 p era t ional Restrict ions 

If the callable procedure element is to reside on an  ordinary file, you must have permission 
to create such a file. If the callable procedure element is to reside on a data library aa a 
Text Dataset or Text Group, the library must be open and have write permission at the 
time the PROCEDURE directive is encountered. 

Processor Reference 

The Processor may create a procedure in advanced network operations. Since a procedure 
definition necessarily requires several lines, it has  to be submitted through the multiline 
message entry point CLPUTM. 

CLIP Subsystem(s) Required 

Command Procedure, plus NICE-DMS Interface if callable procedure element is to reside 
on a data library. 

S t a t u s  . 

Operational. 

REMARK 50.1 

Leading and trailing blanks that appear around the default textstringe (if given) are stripped. If 
you want to preserve such blanks, use apostrophes. Intermediate blanks are protected. 

REMARK 50.2 

If an error is detected while processing this directive, CLIP merely scans for the END directive 
after issuing an  appropriate diagnostic. The callable procedure element is not produced. 

50-3 



Sectlon 50: PROCEDURE 

EXAMPLE 50.1 

This illustrates a procedure that is to reside in a Text Dataset of a positional data library: 
*SET PLIB = 2 
*PROCEDURE MELLOW.YELLOW 

(body) 
*END 

The procedure name is MELLOW.YELLOW, which is a legal GAL dataset name. The procedure 
contains no arguments. The callable element will reside on the positional data library connected 
to Logical Device Index 2. 

EXAMPLE 50.2 

The following directives declare a procedure whose callable procedure element version is to reside 
on an ordinary file: 

*SET PLIB = 0 
*PROCEDURE SURPRISE (WH0;IS;THERE) 

(body 1 
*END 

The procedure name is SURPRISE, which is a legal file name on most computers (CDC and Cray 
excepted, as it exceeds 7 characters). The procedure has three formal arguments identified by 
keywords WHO, IS and THERE. 

EXAMPLE 50.3 

The following illustrate residence on a nominal library connected to Logical Device Index 7: 

*SET PLIB = 7, EINSTEINS.INTERSECTI0N.N 
*PROC FIND (E ; M ; C) 

*END 
(body) 

The procedure name is FIND, which is a legal Text Group name. The procedure has three formal 
arguments: E, M and C. The callable element will reside on the dataset named 

EINSTEINS . INTERSECTION. cyclef 

where cycle1 denotes the highest first cycle of active datasets whose mainkey and extension are 
EINSTEINS. INTERSECTION. 

EXAMPLE 50.4 

The following example illustrates the specification of default argument-replacement text. 

*PROCEDURE INITIALIZE (GDB=NICE. GAL ; CYCLE) 

*END 
(body 1 

If argument GDB is not specified in the CALL to this procedure, as in 

*CALL INITIAL1 ZE (CY CLE=6) 

50-4 

. 



350.1 THE PROCEDURE DIRECTIVE 

then all references to argument, GDB in the procedure body are replaced by the default text, namely, 
MICE. GAL. On t*he other hand, should argument. CYCLE be omitted fram the CALL, rc.ft-renres to it, 
are erased (more technically: a11 occurrences of [CYCLE] in the procedure body are replaced by a 
null string). 

50-5 



Sectlon 50: PROCEDURE 

THIS PAGE LEFT BLANK INTENTIONALLY. 

V 

50 -6 



c 

51 
PUT 

51-1 



Sectlon 51: PUT 

$51.1 THE PUT DATASET DIRECTIVE 

Purpose 

Install dataset name in library. 

Format 

*PUT DATASET-NAME ldi. Dataset-name [/CONDITIONAL] [/MRAT=mrat] 
[/SEQ=Macro-name1 

Abbreviation 

*PUT DATASET-NAME may be abbreviated to *PUT. 

Required Parameters 

ldi 

Dataset-name 

Word Qualifiers 

CONDITIONAL 

Phrase qualifiers 

MRAT= mrat 

SEQ= Macro-name 

Description 

Logical Device Index of library file. 

Name of dataset to be inserted. 

Not implemented. 

For nominal libraries only. Set maximum RAT-packets that dataset 
may use to mrat. If omitted, mmt = 64 is assumed, which is nor- 
mally adequate. 

Not implemented. 

The PUT DATASET-NAME directive creates a new dalaset by installing i t s  name in the Table 
of Contents. Any dataset with the same name is delet.cd. 

Operational Restrictions 

Data library file must be open and have write permission. Existing datasets with the same 
name should not be locked against deletion. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

51-2 



~~ ~ ~~ 
~ ~- 

551.3 THE PUT TEXT-GROUP DIRECTIVE 

CLIP Subsystem(s) Required 
NICE-DMS Interface. 

Status 
Operational except for the CONDITIONAL and SEQUENCE qualifiers. 

EXAMPLE 61.1 
*PUT 2, DISPLACEMENT.1TERATE.N 

§51.z THE PUT TEXT-DATASET DIRECTIVE 

Purpose 

Create Text Dataset from card-image file. 

Format 

I *PUT TEXT-DATASET Datasetid = Filename4 

Required Parameterr 

Dataset-id Identifies the Text Dataset by Logical Device Index linked to a 
sequence number or dataset name and record key. 

Filename The name of an existing FORTRAN card-image file. 

Description 

This directive creates a Text Dataset by copying the contents of a card image file. The file 
is open (in read only mode if this is allowed by the operating system) and its records read 
until the end of file is detected. Then it is closed. 

Operational Restrictions 

Data library file must be open and have write permission. 

Processor Reference 
This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

NICE-DMS Interface. 

Status 

Operational. 

EXAMPLE 51.2 
*PUT 2 ,  DISPLACEMENT. ITERATE .H, CONTENTS = CONTENTS. LIS 

5 1-3 



- 
Section 51: PUT 

551.3 THE PUT TEXT-GROUP DIRECTIVE 

Purpose 

Create Text Group from card-image file. 

Format 

*PUT TEXT-GROUP Tezt-group-id = Filename 

Required Parameters 

Filename 

Tezt - gro up - id 

The name of an existing FORTRAN card-image file. 

Identifies the Text Group to be created. The applicable formats 
are: 

idi, dsnl , Key 
ldi, Dataset-name, K e y  

I Description 

The PUT TEXT-GROUP directive performs a file-to-library function similar to that of the PUT 
TEXT-DATASET directive, but it creates a Text Group in a nominal library. 

C L I P  Subsystem(s) Required 
I 
I NICE-DMS Interface. 

Status 

Operational. 

5 1-4 



52 
REMARK 

52-1 



Section 52: REMARK 

$52.1 THE REMARK DIRECTIVE 

Purpose 

Identifies "active comment" line. 

Format 

I *REMARK I/OUT=unitl Tezt I 
Required Parameters 

Tezt 

Phrase Qualifiers 

OUT= unit 

The text to be printed. The text is assumed to extend from the 
end of the directive keyword (or the end of the directive qualifier if 
one appears) to the last nonblank character. The printed text will 
reflect macro and/or argument expansions. 
Leading and intermediate blanks are respected and lower case char- 
acters are not converted to upper case. Consequently, it is unnec- 
essary to protect the text with apostrophes except in the rare case 
noted in the second Remark below. 

Write output to logical unit unit. If not given, output to the CLIP 
print file (normally logical unit 6) .  Setting unit to zero while in 
interactive mode forces output to go to the terminal. 
Placement Restrictions. This qualifier phrase must appear imme- 
diately after the directive verb. 
Not implemented. 

Description 

A REMARK differs from a comment line in two respects: 
1. The remark text is written to a file regardless of echo-print settings. A comment line 

is printed only if echo is on. 
2. Macrosymbols and/or formal parameters occurring in the remark text are expanded 

before the text is printed. 
These two features justify the name "active comment" used in the Purpose description. 

See also Remark below. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

. 

52--2 



852.1 THE REMARK DIRECTIVE 

REMARK 52.1 

This directive is trapped by CLIP’S “early warning system” as soon as it is read in. It is t hercfore 
spared the normal processing of the other directives as far as parsing text, lower to upper case 
letter conversion, etc. 

I 8 

REMARK 52.2 

If you want to inhibit macrosymbol expansion and formal argument substitution, you should 
protect the remark text with apostrophes. These apostrophes will be shown in the print output. 

EXAMPLE 52.1 

One common application of REMARK is displaying macrosymbol value(s) in more legible form than 
that provided by SHOW MACROS: 

*rem The current value of macrorymbol FREQUENCY ir <FREQUENCY>. 
*rem The value of pi-rquare is < <pi>^O>. 
*rem/v Today is <date>. At the beep the time will be <time>. 

EXAMPLE 52.2 

Another application is to show formal argument values on entry to a command procedure: 

*proc rolve (input;output;tolerance;rtatur) 
*rem Entoring SOLVE with INPUT = [INPUT], OUTPUT [OUTPUT] 
*rem and TOLERANCE = [TOLERANCE]. 

. . .  
*end 

5 2-3 



Sectlon 52: REMARK 

THIS PAGE LEFT BLANK INTENTIONALLY. 

5 2-4 
? 



I -  

53 
RENAME 

f 53-1 



Sectlon 53: RENAME 

863.1 THE RENAME DATASET DIRECTIVE 

Purpose 

Changes dataset name(s). 

Format 

IRENAME DATASET Dataset-id = New-name 1 

Abbreviation 

*RENAME DATASET may be abbreviated to *RENAME. 

Required Parameters 

D a  t 08 et - id Identifies the dataset(s) to be renamed. The specification may be 
by name or sequence number range: 

Ida, Dataset-name 

ldi ,  dsnl I : dsn23 
The first form specifies that datasets in library ldt whose name 
matches Dataset-name are to be renamed. The name may contain 
masking or cycle range specifications. 
The second form specifies that datasets in library ldi whose se- 
quence number falls in the range dsnl through den2 (inclusive) are 
to be renamed. If dsn2 is omitted, dsn2 = den1 is assumed. 

Ne w-name Specifies the new dataset name(s). 
If New-name contains no masking specification, then Dutaet-id 
should identify only one dataset. 
If Dataset-id specifies more than one dataset, New-name should 
have at least one component Masking specification. If a name com- 
ponent in New-name is specified by an asterisk, the corresponding 
old name component is retained. 

Description 

You may use RENAME DATASET to change the name of one or more datasets. You should 
be aware, however, that the before inserting the new name the data manager deletes all 
existing datasets of which names are equal to the new name. In particular, beware of 
renaming several datasets to a common name. 

Operational Restrict ions 

Library must be open and have write permission. 

53--2 

. 



553.2 THE RENAME RECORD DIRECTIVE 

. 

c 

Proeeasor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

NICE-DMS Interface. 

Status 

Operational. 

EXA.MPLE 53.1 

Change the name of the dataset at sequence number 171 of library 23 to BORN.ACAIN: 

*ren 23,171 = born.aga1n 

EXAMPLE 53.2 

Change the mainkey of all datasets in library 14 from STRUCTURE to FLUID: 

*ran 14. rtructura.* = fluid.* 

EXAMPLE 53.3 

For all datasets in the range 16 to 40 (inclusive) in library 6, change the second cycle to 1 and 
the extension to DATA, leaving the other components unchanged: 

*ren 6.16:40 = * . d a t a . * . l . *  

553.2 THE RENAME RECORD DIRECTIVE 

Pu:rpose 

Changes the key or cycle of nominal record(s). 

Format 

I *RENAME RECORD Record-id = New-record-name I 

Relquired Parameters 

Record-id Identifies the nominal record(s) to be renamed. The complete speci- 
fication may specify the owner dataset by name or sequence number 
range: 

Ida, Dataset - nam e , Record - nam e 
ldi. d s n l f  : dsn21 , Record-name 

53-3 



Sectlon 53: RENAME 

Ne w-record-name 

Description 

You may use RENAME 

The two forms correspond to those discussed in the RENAME DATASET 
directive, but now are followed by a record identificr. The record 
identifier may be 

Key 
Key. cycle 

Specifies the new record name(s). The specification may be Key or 
Key. cyc le ,  and should correspond to the Record-name in Record-id. 

RECORD to change the name of one or more nominal records. 

Operational Restrict ions 

You must have write access to the library file. 

Processor Reference 
This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 
NICE-DMS Interface. 

Status 

Operational. 

EXAMPLE 53.4 

Rename record HISTORY in dataset TIME.RESPONSE of library 12 to TRANSIENT: 

*ran 12, TIME.RESPONSE, HISTORY = TRANSIENT 

EXAMPLE 53.5 
There are several datasets called MOTOR.GEOMETRY. cycle with cycle is 1 to 15, in library 7. Each 
dataset has a Record Group identified as COORDINATES. 1 : 240. It is desired to change the Record 
Group key to XYZ in all datasets: 

*ren 7, motor.geosetry.l:lS. coordinate6 = xyz 

EXAMPLE 53.6 

As above, but with two modifications: the change should apply only to the 2 datasets with 
highest cycle numbers, and the record cycle numbers should be incremented by 10 so that it 
becomes XYZ.11:261:  

*ten 7, motor.geometry.h, coordinatee.1 = xyz.11 

53-4 



54 
RETURN 

54-1 



Sectlon 54: RETURN 

554.1 THE RETURN DIRECTIVE 

Purpose 

Forces exit from command procedure. 

Format 

Description 

This directive unconditionally transfers control to the end of a command procedure, The 
next dataline is taken from the previous command source. 

Dataline Restrict ions 

Commands that follow this directive in the same line are ignored. 

Operational Restrict ions 

Works only within command procedures. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. Note, however, 
that sending an EOF message achieves the same effect and that EOF works also for script 
input. 

CLIP subsystem(s) required: 

Command Procedure. 

Status 

Operational. 

REMARK 54.1 

It is unnecessary to put a RETURN directive before the END directive. 

I 

54-2 



c 

55 
RUN 

55-1 



Sectlon 55: RUN 

$66.1 THE RUN DIRECTIVE 

Purpose 

Starts the execution of another Processor. 

Format 

I *RUN [/Qualifier] Processor [Tezt]  I 

none 

f 

Required Parameters 

Processor The name of the Processor to be started. (More precisely, the name 
of the file that contains the executable image.) 

If this name is wrong, the system will usually abort the run. Then 
on the VAX you should delete state save file ZZZZZZZ .DAT, which is 
created by SuperCLIP in anticipation of a process save/restore as 
described in $10. (This file is automatically deleted if the directive 
is executed normally.) 

Optional Parameters 

Tezt Presently ignored. 

Word Qualifiers 

CHAIN 

Run a CLIP-supported Processor and update Process Name Stack 
(so that a STOP directive restarts the parent Processor). 

Run a CLIP-supported Processor but don’t update Process Name 
Stack (this precludes use of a downstream STOP directive). 

Run program not supported by CLIP. FORE I GN 

Description 

This directive, together with STOP, forms the basis of SuperCLIP. 

Operational Restrict ions 

This directive is only presently available under VAX/VMS and Unix-based systems. 

55-2 



555.1 T H E  RUN DIRECTIVE 

Da taline Restrictions 

This directive must be in a dataline by itself. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

SuperCLIP. 

Status 

Operational. 

EXAMPLE 55.1 

See examples in 510. 

55-3 



~~ 

Sectlon 55: RUN 

. 

THIS PAGE LEFT BLANK INTENTIONALLY. 

56-4 



56 
SET 

56-1 



Sectlon 56: SET 

$66.1 THE SET ARGUMENTS DIRECTIVE 

Purpose 

Changes the value of a procedure argument. 

Format 

I *SET ARGUMENT = Tezt I 
CLIP Subsystem(s) Required 

Command Procedure. 

Status 

Not implemented. 

$56.2 THE SET CHARACTER DIRECTIVE 

Purpose 

Changes a volatile control character. 

Format 

I *SET CHARACTER C/tar-namc=Char I 

Required Parameters 

Char-name The name of the control character to be replaced. The most im- 
portant ones (from the user’s standpoint) are listed in Table 56.1. 
A complete list may be obtained by entering a SHOW CHARACTERS 
directive. 

Char The new control character. 
Eztrcmely important. The specification is not free field. There must 
be an equal sign immediately after Name, and the character must 
immediat,ely follow the eqiial sign. 

Description 

The SET CHARACTERS changes a volatile control character. Examples of such characters 
are the qualifier prefix (default value = slash) and the item repetitor (default value = 
at-sign). 

Replacement characters are not arbitrary. If you try to replace a control character by 
something like a letter or a number, you will get an error message and the replacement is 
not performed. 

56-2 

, 



Q56.2 T H E  SET CHARACTER DIRECTIVE 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. In fact it is rarely 
entered by an external command. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. Should be considered dangerous and will be phased out. 

EXAMPLE 56.1 

Have the Procearor change the item-repetitor character from the default @ to * aa in the old CLIP 
and show the replacement: 

CALL CLPUT ('*ret char repeat=* ; *rhow char') 

After verifying the Procemor the *rhor char directive may be removed from the message text. 

56-3 



Sectlon 56: SET 

Table 56.1 Control Character Names for SET CHARACTER Directive 
. 

Name Function Default 

ARGBEG 

ARGEND 

DIRPRE 

ENDSRC 

EOL 1 

EOL2 

HYPHEN 

MACBEG 

MACEND 

MACPAR 

QUAPRE 

RECSEP 

REPEAT 

Left formal-argument delimiter in procedure body 

Right formal-argument delimiter in procedure body 

Directive prefix 

End-of-command-source sentinel 

End of line terminator #1 
(also comment sentinel #1) 

End of line terminator #2 
(also comment sentinel #2) 

Item hyphenator 

Left macrosymbol delimiter 

Right macrosymbol delimiter 

Macro definition argument marker 

Qualifier prefix 

Same-line record separator 

Item repetitor 

56-4 



556.4 THE SET ECHO DIRECTIVE 

$58.3 THE SET CPU-TIME DIRECTIVE 

Purpose 

Set internal CPU time stopwatch. 

I . Format 

I *SET CPU-TIME I 
Description 

The CPU system clock is read and its value stored internally. Elapsed times with respect 
to this reading may be printed through the SHOW CPU-TIME directive 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

Operational Restrictions 

Operational on VAX/VMS and Unix-based systems. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

EXAMPLE 56.2 
Show CPU time spent running NICE Processor SKY PUL: 

* r o t  cpu 
*run nico$oxe:rkypul 
*rhow cpu 

$68.4 THE SET ECHO DIRECTIVE 

Purpose 

Set dataline echo options. 

Format 
~~ 

*SET ECHO [ = ~pt ion- l is t~  I 
Abbreviation 

*SET ECHO may be abbreviated to *ECHO. 

56-5 



Section 56: SET 

Optional Parameters 

Option-list A list of keywords that specifies echo options, as shown in Table 
56.2. 
If no option keys are given the default settings indicated in Table 
56.3 are put in effect. These settings are those in force at run start. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

EXAMPLE 56.3 

*SET ECHO - ON, VERBOSE ,MACRO 



~ ~~ 

§56.4 THE S E T  ECHO DIRECTIVE 

Table 56.2. Options for SET ECHO Directive 

L 

Option 

CONCISE 

DECODE 

DSPACE 

MACRO 

MDETAIL 

NDECODE 

NHEADER 

ON 

OFF 

TERMINAL 

VERBOSE 

Efect  

Set "concise mode" thus negating the effect of a previous VERBOSE 
opt ion. 

Print the Decoded Item Table after each ordinary command. 
(Equivalent to entering a *SHOW DEC after each command.) 

Double space data line echoprint (if echo is ON) 

Display final effect of macro substitution (if echo is ON) 

Display all stages of macro substitution (if echo is ON) 

Turn off the effect of a previous DECODE option. 

Suppress print of data line header (if echo is ON). 

Turn on data line echo. 

Turn off data line echo. 

Give immediate "terminal echo" of data lines. 

Turn on "verbose mode" so that splash lines supplied in the 
second argument of CLREAD or CLNEXT (Volume 111) are shown 
when terminal input is requestml. 

56-7 



~~ 

Section 56: SET 

Table 56.3. Default Echo Settinge 

Run Mode Defaults at Runatart 

Batch Data line images are immediately echoed, single spaced, on 
the CLIP print file. 
The image echo is preceded by a short header. 
Procedure line images with substituted arguments are 
printed. 
Effects of macro substitution are not printed. 
Decoded Item Table is not printed after each command. 

Interactive No echoprint of any form. 

$56.6 THE SET ERROR-TRACE DIRECTIVE 

Purpose 

Set NICEDMS Error Trace display options. 

Format 

1 *SET ERROR TRACE [ = option l id ]  1 
Optional Parameters 

Option-lid Format to be determined. 

Description 

This directive sets error processing options pertaining to NICEDMS. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

. 

56-8 



§56.7 THE SET MODE DIRECTIVE 

* 

CLIP Subsystem(s) Required 

NICE-DMS Interface. 

Status 

Experimental; format subject to change. 

$60.0 THE SET HELP-FILE DIRECTIVE 

Purpose 

Set current help file. 

Format 

I *SET HELP-FILE [= ~ i l e n a r n c ~  1 
Abbreviation 

*SET HELP-FILE may be abbreviated to *HFILE. 

Optional Parameters 

Filename The name of the help file. I, omitted, the help fi-2 for CLIP direc- 
tives is assumed. 

Description 

This directive sets the help file that will be accessed by subsequent HELP directives. Proper 
operation depends on installation options. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

56-9 



Sectlon 56: SET 

556.7 THE SET MODE DIRECTIVE 

Purpose 

Sets mode parameters that affect command processing. 

Format 

*SET MODE = [Mode-key1 

Optional Parameters 

Mode - key One of the keywords listed in Table 56.4. 

If no keyword ia given, all default modes are set. 

Description 

This directive sets certain parameters that affect certain aspects of command processing. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsyetem(8) Required 

None. 

Status 

Experimental; format subject to change. 

58-10 



~ 

$56.8 THE SET PROCEDURE-LIBRARY DIRECTIVE 

Table 56.4 Keywords for SET MODE Directive 

Mode-key Eflect Default setting 

EMPTY Accept empty input lines 
that return a zero item count 

Ignore empty input lines 

LC Same as NOUPCASE 

MACROPROCESSOR Not implemented 

NOUPCASE Suppress automatic conversion of all 
unprotected strings to upper case 

Convert lower to upper 

NOMACRO Suppress macrosymbol expansion Expand macrosymbols 

$56.8 THE SET PROCEDURE-LIBRARY DIRECTIVE 

Purpose 

Identifies residence of callable procedure elements. 

Format 

I *SET PLIB = [ fd i  [ , D a t a ~ ~ t l l  

*SET PROCEDURE-LIBRARY is abbreviated to *SET PLIB. 

Optional Parameters 

ldi If nonzero, Logical Device Index of procedure library in which 
Callable procediire elrments (CPEls) for siihseqnent CALL or PROCEDURE 
directives are assumed to reside. 
If zero (or if the entire specification is omitted), residence is on 
ordinary files (default setting). 
Refer to §5 for details. 

Datase t - name If Ida is nonzero and points to a nominal (GAL82) library, name of 
the owner dataset in which callable procedure elements are assumed 
to reside. 

56-11 



I Sectlon 56: SET 

Description 

The directive sets the residence of callable procedure elements. Refer to 55 for details. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem( 8 )  Required 

Command Procedure and NICE-DMS Interface for data library residence. 

Status 

Operational. 

$56.9 THE SET RUNNODE DIRECTIVE 

Purpose 

Sets the run mode environment overriding detected mode. 

Format 

I *SET RUNMODE = { BATCH I INTERACTIVE I CONVERSATIONAL } 1 

Required Parameters 

BATCH Declares a batch environment. 

INTERACTIVE Declares interactive environment. 

CONVERSATIONAL Declares conversational environment. 

Description 

The SET RUNMODE directive overrides the environment detected by CLIP on first entry. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

I S ta t i l s  

Operat ion at. 

56-12 



§56.11 THE SET UNIT DIRECTIVE 

I .  

I 7  

§50.10 THE SET TERMINAL DIRECTIVE 

Purpose 

Sets characteristics of your terminal device. 

Format 

I *SET TERMINAL = Options I 
CLIP Subsystem(s) Required 

None. 

Status 

Not implemented. 

556.11 THE SET UNIT DIRECTIVE 

Purpose 

Set a CLIP logical unit. 

Format 

I *SET UNIT Unit-name [ = unit] 1 
Required Parameters 

Unit-name Keyword that identifies the unit. See Table 56.5. 

Optional Parameters 

unit New unit number. If omitted, the default value is set. 

Description 

The SET UNIT directive resets the value of a logical unit used by CLIP. These values may 
be displayed through the SHOW UNITS directive. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

56--13 



~~ 

Sectlon 56: SET 

Table 56.5 Logical Unit Names for S E T  UNIT Directive 

Argument key Description Default value 

C I N  

ECH 

ERR 

LOG 

Logical unit number of the command source 
file from which CLIP is reading data lines. 
If zero, the default input device is assumed. 

Logical unit number of dataline echo file. 

Logical unit number of the error print file if 
greater than zero. If zero, error messages go 
to the default print file (the terminal in 
interactive mode). 

Logical unit number of the command log file if one 
is currently open, otherwise zero. 

0 

6 

0 

0 

PRT Logical unit number of the bulk print file. 6 

$66.12 THE SET VIDEO DIRECTIVE 

Purpose 

Sets attributes that affect display appearance on video terminals. 

Format 

I *SET VIDEO = Opttons 1 
CLIP Subsystem(s) Required 

None. 

56-14 

c 

Status 

Not implemented. 



$56.14 THE SET WINDOWS DIRECTIVE 

$56.13 THE SET WIDTH DIRECTIVE 

Purpose 

Sets the maximum line input width or line print width. 

Format 

Abbreviations 

I *SET (LIW I LPW } = width I 

*SET WIDTH LIW must be abbreviated to *SET LIW and *SET WIDTH LPW must be abbre- 
viated to *SET LPW. 

Required Parameters 

LIW To set Line Input Width. 

LPW To set Line Print Width. 

width Width in characters. If value is outside admissible range, the closest 
legal value is assumed. 

Description 

The SET WIDTH directive may be used to reset the maximum input line width and maximum 
line print width over the default values. The default values depend on run mode and 
computer host, but normally are (80,80) for interactive mode and (80,128) for batch mode. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

56-15 



Sectlon 56: SET 

~ 

556.14 THE SET WINDOWS DIRECTIVE 

Purpose 

Show attributes that affect screen-windowing displays. 

Format 

I *SET WINDOWS KCY [= Option-list I 1 
CLIP Subsystem(s) Required 

None. 

Status 

Not implemented. 

58-16 



57 
SHOW 

57-1 



Section 57: SHOW 

$57.1 THE SHOW ARGUMENTS DIRECTIVE 

Purpoae 

List procedure arguments and their replacement text. 

Format 
F I *SHOW ARGUMENTS [/OUT=unit] I 

Phrase Qualifiers 

OUTxunit Write output to logical unit unit. If not given, output goee to the 
CLIP print file (normally logical unit 6). 

Description 

The SHOW ARGUMENTS directive lists the formal arguments and replacement text of the 
command procedure pertaining to the present procedure level. If the procedural level is 
zero this directive is ignored. 

Operational Restrict ions I 

Only operates if the command stream is at procedural level 1 or higher. Normally inserted 
in the body of the command procedure itself, but works even in script files (or terminals) 
ADDed by the procedure. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

Command Procedure. 

Status 

Operational. 

EXAMPLE 57.1 

List arguments of procedure DO on entry to it: 

*proc do (nl=l;n2=4;n3=1) 
*show argument. 

*end 
. . .  

EXAMPLE 57.2 

This is a bit fancier. A procedure queries the terminal on entry: 

*proc solve (input ; output; options) 
*SOLVE entered. Any inatructionr, bora? * 

*end 
. . .  

57-2 

. 



f 5 7.3 T H E S H 0 W C 0 M MAN D -S 0 U R C E -S TAC K D I R E C T I V E 

If you type *SHOW ARC in response to the prompt, you will be shown arguments INPUT, OUTPUT 
and O P T I O I S .  

§57.3 THE SHOW CHARACTERS DIRECTIVE 

Purpose 

Show CLIP control characters. 

Format 

I *SHOW CHARACTERS [/OUT=unitl I 

Phrase Qualifiers 

OUT=unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

The SHOW CHARACTERS directive displays CLIP'S volatile control characters and their 
present values. Examples of such characters are the qualifier prefix (default value = slash) 
and the item repetitor (default value = at-sign). These characters may be reset using the 
SET CHARACTERS directive, and SHOW CHARACTERS provides a way to check whether the 
reset has been performed correctly. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

EXAMPLE 57.3 

Have the Processor change the item-repetitor character from the default 0 to * as in the old CLIP 
and show the replacement: 

CALL CLPUT ( '*ret  char repeat=* ; *show char') 

After verifying the Processor the *SHOW CHAR continuation record may be removed. 

57-3 



Sectlon 57: SHOW 

857.3 THE SHOW COMMAND-SOURCE-STACK DIRECTIVE 

Purpose 

Show the configuration of the Command Source Stack. 

Format 

I *SHOW CSS [/OUT=untt] I 
Abbreviation 

t 

*SHOW COMMANDSOURCESTACK is abbreviated to *SHOW CSS. 

Phrase Qualifiers 

OUT= unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6) .  

Description 

This directive shows the configuration of the command source stack (CSS) described in 54 
of Volume I. The output format is illustrated by the following example. 

<CL> Command Source Stack: 
Un Lin Rec Ldi Dsn Rap LOC E Name 

36 2 0 0 0 0  0 0 CALLDO.ADD 
-1 25 43 1 1 1 647 0 DO 
-1 2 20 1 1 2 1647 0 INNER 

0 6 0 0 0 0  0 0 $term 

The meaning of the columns is 
Un If '0, logical unit number of source file. Zero means the standard input source 

(your terminal if run is interactive). Negative means that input comes from a 
data library whose LDI is the absolute value of that shown. 
Number of last line read from source. 
Meaningful only if reading from a d a t a  lihrary. If sn, i t  shnw t.hc recnrrl tirimher 
of the last line read. 
If reading from a data library, its LDI. 
If reading from a positional data library, sequence number of Text Dataset. If 
reading from a nominal data library, sequence number of dataset that owns the 
Text Group. Otherwise zero. 

If reading from a nominal data. library, record access packet index of Text 
Group, otherwise zero. 

Lin 
Rec 

Ldi 

Dsn 

Rap 

57- 4 



$57.4 THE SHOW CPU-TIME DIRECTIVE 

I 

ci 

LOC 

E 
Name 

If input comes from a data library, device location of Text Dataset or Text 
Group start. 
I if source activated using *add/eof, else zero. 
The name of the command source. If the source is unit zero, the source is either 
$term or $root, as explained in Volume I. If reading from a FORTRAN file, 
positional library, or nominal library, the name is the file name, Text Dataset 
name, or Text Group name, respectively. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

EXAMPLE 57.4 

If procedure level is 3 or higher, display command source stack. 

* i f  < <cslevel> /ge 3> /then 
*show cas 
*endif 

$57.4 THE SHOW CPU-TIME DIRECTIVE 

Purpose 

Show CPU time elapsed since previous SET CPU. 

Format 

1 *SHOW CPU-TIME I/OUT=undl I 

Phrase Qualifiers 

OUT=unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

The CPU system clock is read. The time is converted to seconds if necessary, subtracted 
from the internal stopwatch time, and printed. 

57-5 



Section 57: SHOW 

Pro c es s or Reference 

This directive may be submitted through the message entry point CLPUT. 

Operational Restrictions 

Operational on VAX/VMS and Unix-based systems. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

EXAMPLE 57.5 

Show CPU time spent running NICE Processor SKYPUL. 

*set cpu 
*run niceSexe:skypul 
*show cpu 

367.6 THE SHOW DECODED-ITEMS DIRECTIVE 

Purpose 

Show Decoded Item Table. 

Format 

1 *SHOW DECODED-ITEMS [/OUT=unit] I 

Abbreviation 

*SHOW DECODED-ITEMS may be abbreviated to *DEC. 

Phrase Qualifiers 

OUT= unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

This directive shows the present contents of the Decoded Item Table described in Volume 
111. This table contains the results of the processing of the last ordinary command acquired 
as a result of a Processor reference to CLREAD or CLNEXT. 

57-0 

c 



~ ~ -~ ~~ ~ 

s57.7 THE SHOW ERROR-TRACE-STACK DIRECTIVE 

It is an invaluable command for interface debugging. Consequently, there is the ab- 
breviated form *DEC. An echo mode in which this table is printed after ench ordinary 
command can be set through a SET ECHO directive. 

Processor Reference 

This directive may be submitted through the rriessage entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

Status 

Operat ional. 

557.8 THE SHOW ECHO DIRECTIVE 

Purpose 

Show command echo settings. 

Format 

CLIP Subsystem(s) Required 

None. 

Status 

Not implemented. 

557.7 THE SHOW ERROR-TRACE-STACK DIRECTIVE 

Purpose 

Show Error Trace Stack of NICE-DMS. 

Format 

I *SHOW ERROR-TRACE-STACK [/OUT=utzitl I 

Abbreviation 

*SHOW ERROR-TRACESTACK may be abbreviated to +:SHOW ETS. 

57-7 



Sectlon 57: SHOW 

Phrase Qualifiers 

OUT= unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6) .  

Description 

This directive shows the present contents of the Error Trace Stack (ETS) of NICE-DMS. 
The ETS records the sequence of internal calls in the last reference to a GAL-DMS entry 
point. The last trace line identifies the Processor subroutine that issued the call. It is 
primarily useful after an error condition has been reported by GAL-DMS or DMGASP. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(8) Required 

None. 

Status 

Operational. 

EXAMPLE 57.6 

An error message occurs after an OPEN. 

*open input. lib 
(error merrage) 
*show eta 

$57.8 THE SHOW HELP DIRECTIVE 

Purpose 

Show current help file and video parameters. 

~ Format 

1 *SHOW HELP [/OUT=unit] I 
Phrase Qualifiers 

OUT= unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6) .  

57-8 



_____ - -  

$57.10 THE SHOW LOGICAL-DEVICE-TABLE DIRECTIVE 
“ssrs, 

Description 

This directive shows the present values of parameters that affect help file access and display. 
These parameters are the current help file name, w i n d o w b n d  video settings. 

Processor Reference 

This directive may be Submitted through the message entry point CLPUT. 

CLIP Subeyatem(s) Required 

None. 

Status 

567.9 THE SHOW LIBRARIES DIRECTIVE 

Purpose 

Show active data libraries. 

Format 

I *SHOW LIBRARIES [lOUT-unitI I 
Phrase Qualifiers 

OUT= unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

This directive causes a list of all data libraries presently active to be listed. The list 
includes Logical Device Index (LDI), library form (i.e., DAL, GAL80 or GAL82) and file 
name. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

NICE-DMS Interface. 

! 

Status 

Operational. 

5 7-9 



-- - 

\4 I 

Sectlon 57: SHOW 

§57.10 THE SHOW LOGICALDEVICE-TABLE DIRECTIVE 
0 b i  

Purpose w 
Print Logical Device Table of the 1/0 Manager DMGASP. 

Y 

Format 

I *SHOW LOGICAL -DEVICE-TABLE [/FULL] [/OUT=unit] I 

Abbreviation 

*SHOW LOGICAL-DEVICE-TABLE may be abbreviated to *SHOW LDT. 

Word Qualifiers 

FULL Show complete table, including all legal devices. If omitted, only 
the active devices are shown. 

Phrase Qualifiers 

OUT= unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

In response to a SHOW LOGICALDEVICE-TABLE directive, CLIP calls the 1/0 Manager DM- 
GASP with a list-LDT request, This directive is primarily used for 1/0 debugging and for 
program optimization, since the 1 / 0  Manager level is not for the casual user. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT.  

CLIP Subsystem(s) Required 

NICE-DMS Interface. 

Status 

Operational. 

57-10 

. 



~ $57.11 THE SHOW MACROSYMBOLS DIRECTIVE 

557.11 THE SHOW MACROSYMBOLS DIRECTIVE 

8 

.. 

Purpose 

Show defined macrosymbol(s). 

Format 

I *SHOW MACROSYMBOLS [Name 1 [/BUILT-IN] [/OUT=unit] I 
Optional Parameters 

Name 

Word Qualifiers 

BUILT -1 N 

Restrict print to macrosymbols that match this name. 
A trailing asterisk may be used for name masking and is useful for 
printing macrosymbol arrays. 

If Name is omitted and qualifier BUILT-IN is missing (given), all 
user-defined (built-in) macrosymbols are shown. 

Restrict print to built-in macros. If this qualifier is omitted, print 
is restricted to user-defined macros. 

Phrase Qualifiers 

OUT= unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

In response to a SHOW LOGICAL-DEVICE-TABLE directive, CLIP calls the 1/0 Manager DM- 
GASP with a list-LDT request. This directive is primarily used for 1/0 debugging and for 
program optimization, since the 1 / 0  Manager level is not for the casual user. 

Processor R.eference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

NICE-DMS Interface. 

Status 

Operational. 

57--11 



Section 57: SHOW 

EXAMPLE 57.7 

Show all user-defined macrosymbols. 
*SHOW MAC 

Show all built-in macrosymbols. 
*SHOW MAC/B 

EXAMPLE 57.8 

Show all user-defined macrosymbols that begin with X 

*SHOW MAC X* . 
EXAMPLE 57.9 

Show all entries of macrosymbol array FIBO:  

*SHOW MAC FIBO[*  

$67.12 THE SHOW MODE DIRECTIVE 

Purpose 

Show CLIP modal parameters. 

Format 

I *SHOW MODES [/OUT=unitl I 

Description 

The modal parameters shown by this directive are those that may be set through the SET 
MODE directive. These parameters affect certain facets of command processing. 

Procerrsor R.eference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s)  Required 

None. 
L 

Status  

Experimental. 

57--12 



.. 

~~ ~~~~~ ~- 
~~ ~~~~ 

557.14 THE SHOW PROCESS-NAME-STACK DIRECTIVE 

567.13 THE SHOW PROCEDURE-LIBRARY DIRECTIVE 

Purpose 

Show callable procedure library. 

Format 

I *SHOW PROCEDURE-LIBRARY [/OUT=unitl I 

Abbreviation 

*SHOW PROCEDURE-LIBRARY may be abbreviated to *SHOW PLIB. 

Phrase Qualifiers 

OUT=unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

The directive shows the presently assumed callable procedure library. This library is 
identified by two components: a Logical Device Index (LDI) and a optionally a dataset 
name. 

If the LDI is greater than zero, it points to a data library connected to that LDI. 
If the library is nominal, the dataset name points to the owner of the callable procedure 
elements stored as Text Groups. If the library is positional, the dataset epecification is 
ignored. 

If the LDI is zero, the callable procedure elements reside on ordinary files. This 
is the default on Processor start. The pointers may be changed through the SET 
PROCEDURE -L IBRARY directive. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

Command Procedure for data library residence. 

(I 

I 

Status 

Operational. 

57 -13 



~ ~~ 

Section 57: SHOW 

557.14 THE SHOW PROCESS-NAME-STACK DIRECTIVE 

Purpose 

Show configuration of Process Name Stack of SriperClip. 

Format 
Y 

I *SHOW PROCESS-NAMESTACK [/OUT=undl I 

Abbreviation 

*SHOW PROCESS-NAME-STACK may be abbreviated to *SHOW PNS. 

P hraae Qualifiers 

OUT= unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

The directive shows the present configuration of the Process Name Stack (PNS) maintained 
by Superclip. 

Operational Restrict ions 

Available only on VAX/VMS. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

S 11 per Cl i p. 

Status 

Operational. 

REMARK 57.1 

Do not confuse with SHOW MODES, which pertains to commend processing modes. SHOW RUN-MODE 
pertains to the Processor execution environment. 

67-14 



~- 
~ 

~ ~~ 

$57.17 THE SHOW TIME DIRECTIVE 

$67.16 THE SHOW RUNMODE DIRECTIVE 
I t  

Purpose 

Show the run mode. 

Format 

I *SHOW RUNMODE [/OUT=unitl 1 

Phrase Qualifiers 

OUT= trnit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

The SHOW RUNMODE directive shows whether the run is batch or interactive. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

$57.16 THE SHOW TERMINAL DIRECTIVE 

Purpose 

Show characteristics of your terminal device. 

Format 

1 *SHOW TERMINAL [/OUT=unitl I 
CLIP Subsystem(s) Required 

None. 

Status 

Not implemented. 

57-15 



Sectlon 57: SHOW 

557.17 THE SHOW TIME DIRECTIVE 

Purpose 

Show current date and time of day. 

Format 

I *SHOW TIME [/OUT=unit] I 
Phrase Qualifiers 

OUT=unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

The SHOW TIME directive shows the date and time of day as read from the system clock. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

557.18 THE SHOW VIDEO DIRECTIVE 

Purpose 

Show attributes that affect display appearance on video terminals. 

Format 

I *SHOW VIDEO [/OUT=unit] I 
CLIP Subsystem(s) Required 

None. 

Status 

Not implemented. 

57-10 



c 

s57.19 THE SHOW UNITS DIRECTIVE 

$57.19 THE SHOW UNITS DIRECTIVE 

Purpose 

List CLIP logical units. 

Format 

Phrase Qualifiers 

OUT=unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

The SHOW UNITS directive lists the logical units accessible to CLIP, the value of which may 
be reset through a SET UNIT directive. The display format is aa illustrated below. 

<CL> Units: Add: 0. Cin: 0 .  Cpr: 6 ,  Ech: 6 ,  Err: 0,  Hpr: 0 
L i s :  33. Log: 0 .  P l t :  6. P r t :  6. Qin:  0, Qlo: 0 

where the meaning of the labels is given in the following table. 

Label Unit for Description 

Add file 
CLIP input 
CLIP print 
CLIP echo 
Error file 
Help file 
Roving list file 
Logging file 
Query-input file 
Query-log file 

For connection to script files 
Active unit in command source stack 
Receives nonspecial CLIP print output 
Receives dataline echo if on 
Receives error messages; 0 =terminal 
Receives help file listing; 0 =terminal 
Available for LIST and TYPE 
Receives command logging activated by LOG 
Advanced applications 
Advan cod ap p I ications 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

57-17 



~ ~ 

Section 57: SHOW 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

557.20 THE SHOW WIDTH DIRECTIVE 

Purpose 

Shows the maximum line input and print widths in effect. 

Format 

I *SHOW LIW[/OUT=un:tl I 

Phrase Qualifiers 

OUT-unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6). 

Description 

The SHOW LINE-INPUT-WIDTH directive prints the value of the maximum width of CLIP 
input lines. By default the width is 80 but may be reset using SET LINE-INPUT-WIDTH 
directive to a value in the range 60 to 132. (Procedure line width is not subjected to 
change, however; it is always 80.) 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

57--18 



557.22 1/0 DEBUGGING 

$57.21 THE SHOW WINDOWS DIRECTIVE 

Purpose 

Show attributes that affect screen-w indow ing displays. 

Format 

I *SHOW WINDOWS [/OUT=unztl I 

CLIP Subsystem(s) Required 

None. 

Status 

Not implemented. 

REMARK 57.2 
Primary applications will be on bit-mapped workstations. 

557.22 110 DEBUGGING 

Purpose 

Show DMGASP data structures for debugging or code optimization. 

Format 

*SHOW IOM Entity I 
Required Parameters 

Entity One of the following keywords: 
OSD Show operation status descriptors. 
PI0 Show Paged 1 / 0  statistics. 
PBT 

PKT 
Show Page Buffer Table for Paged I/O. 
Show Block T/O Packet (a. commitnicathms area). 

Phrase Qualifiers 

OUT= unit Write output to logical unit unit. If not given, output goes to the 
CLIP print file (normally logical unit 6) .  

Description 

These directives are riot, for ordinary users since a deep knowledge of the 1/0 Manager 
level of NICE-DMS is required for proper intcrpretation. 

57-19 



Sectlon 57: SHOW 

I Operational Restric tions 

I Entity = PKT, are only available if Block 1 / 0  is implemented. Entity = PI0 and PBT are 
only available if Paged 1/0 is implemented. 

Processor Reference 

These directives may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

NICE-DMS Interface. 

Status 

Operational. 

57-20 



I 

V 

58 

SPAWN 



Sectlon 58: SPAWN 

868.1 THE SPAWN DIRECTIVE 

Purpose 

Spawns a subprocess. 

Format 

Optional Parameters 

I *SPAWN [System-command I 

. 
System-command A VAX/VMS DCL command (without the dollar sign). This com- 

mand will be executed by the spawned process and control will then 
return to the parent process. If omitted, the spawned process will 
await your commands; to get back to the parent process you will 
have to log out. 

Description 

The spawned subprocess is initiated by a call to LIBSSPAWN with the system command, if 
any, as argument. 

Da taline Restrict ions 

This directive must be in a dataline by itself. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

EXAMPLE 58.1 

Spawn a subprocess to edit the file TEXT.DAT: 

*SPAWN EDT TEXT. DAT 

EXAMPLE 58.2 

Spawn a subprocess that will receive several DCL commands: 

*SPAWN 

To get back, you type LOG. 

68-2 



c 

59 
STOP 

58-1 



Sectlon 59: STOP 

$69.1 THE STOP DIRECTIVE 

Purpose 

Stops RUN-initiated execution and restarts the parent Processor. 

Format 

Description 
? 

Refer to $10 for funct.ma1 and implementation details. 

Operational Res trictions 

Applicable if Processor being interrupted was initiated through a RUN directive. Otherwise 
the STOP produces a normal run stop. 

Da taline Restrict ions 

This directive must be in a dataline by itself. 

CLIP Subsystem(s) Required 

SuperCLIP. 

Status 

Operational. 

59---2 ? 



t 

60 
TYPE 

00-1 



Sectlon 60: TYPE 

$60.1 THE TYPE FILE DIRECTIVE 

Purpose 

List card-image file on the terminal. 

Format 

[ *TYPE Filename [/HEAD] I 
Required Parameters 

Filename The name of the card-image file to be listed. Masking is not per- 
mitted. 

Word Qualifiers 

HEAD Write a header line that gives the name of the file. 

Description 

The TYPE-file directive is analogous to the LIST-file directive but output goes to the user’s 
terminal. If running on VTlOO or VTlWcompatible terminal, line images are shown in 
reverse video. 

Operational Restrictions 

Same as for LIST. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

None. 

Status 

Operational. 

R E M A R K  60.1 
The print record length is normally limited to 80 characters. This is the default line print width, 
which may be increased up to 132 characters, if desired, through the SET WIDM directive. 

EXAMPLE 60.1 

*TYPE PROC:FORPRC.MSC 

File PROC:FORPRC.MSC (a VAX filename) is to hc! list,c.d on the terniinal. 

60. - 2 



$60.3 THE TYPE TEXT GROUP DIRECTIVE 

560.2 THE TYPE TEXT DATASET DIRECTIVE 

Purpose 

List Text Dataset on terminal. 

Format 

I *TYPE Tezt-dataset [/HEAD] I 

Required Paramet ers 

Text-dataset Identifies the Text Dataset(s) to be listed. See the LIST dataset 
directive for details. 

Word Qualifiers 

HEAD Write a header line that identifies the Text Dataaet. 

Description 

The TYPE directive is analogous to the LIST Text Dataaet directive with two differences: 
the output always goes to the user’s terminal if running in interactive mode, and reverse 
video is used if the terminal is VTlOO or VTlW compatible. 

Operational Restrict ions 

Same as for LIST. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required NICE-DMS Interface. 

Status 

Operational. 

EXAMPLE 60.2 

*TYPE/H 1 .4  
*TYPE/H 1,*  

60-3 



Sectlon 60: TYPE 

560.3 THE TYPE TEXT GROUP DIRECTIVE 

Purpose 

List Text Group on terminal. 

Format 

I *TYPE Ted-group [/HEAD] I 
4 

Required Parameters 

Ted-group Identifies the Text Group(s) to be listed. Refer to the LIST Text 
Group directive for details. 

Word Qualifiers 

HEAD Write a header line that identifies the Text Group. 

Description 

The TYPE Text Group directive is analogous to the Text Group directive with two differ- 
ences: the output always goes to the user’s terminal if running in interactive mode, and 
reverse video is used if the terminal is VT100 or VT100 compatible. 

Operational Restrictions 

Same as for LIST. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

NICE-DMS Interface. 

Status 

Operational. 

EXAMPLE 60.3 

*TYPE/H 1 , 4 ,  CONTENTS 
*TYPE 2 , * , A B S T I U C T  

60-4 



* 
I 

e 

c 

61 
UNDEFINE 

61-1 



Section 61: UNDEFINE 

$01.1 THE UNDEFINE DIRECTIVE 

Purpose 

Delete macrosymbol(s). 

Format 

[ *UNDEFINE [/GLOBAL1 Namcht I 
Required Parameters 

Namc-fi~t A list of up to eight macrosymbol names to be removed from the 
macrosymbol name table. Masking characters may be used to on 
any of these names to specify removal of name-related macrosym- 
bols. For example, 

*UNDEF XINV* 
removes all symbols whose name starts with XINV whereas 

removes all names within the scope of this directive. 
To undefine macrosymbol arrays a masking specification is needed 
(see Example below). Using a range specification would be more 
logical, but it has not been implemented. 

*UNDEF * 

Word qualifier 

GLOBAL Delete up to the global level. If this qualifier is omitted, macrosym- 
bols under the current procedural level are not deleted. 

Description 

This directive, complementary to DEFINE, removes macrosymbols from the macro tables. 
The removal is specified by name and scope. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Si1 hsystem( P) Required 

Macrosymbol. 

Status 

Operational except for GLOBAL qualifier. 

REMARK 61.1 
This directive should not be applied to DO loop control variables (directly, or indirectly using 
masking), for execution of the loop may be affected in strange ways. 

01-2 



861.1 THE UNDEFINE DIRECTIVE 

EXAMPLE 61.1 

Undefine macrosymbols ALPHA, BETA and GAMMA at the current procedural level: 

*UNDEFINE ALPHA, BETA, G W  

EXAMPLE 61.2 

Undefine all macrosymbols that begin with X at all levels: 

*VND/G X* 

EXAMPLE 61.3 

Undefine all entries of macrosymbol array LIST: 

4 

*vND LIST[* 

61-3 



Sectlon 61: UNDEFINE 

t 

THIS PAGE LEFT BLANK INTENTIONALLY. 

61-4 



62 
UNLOAD 

62-1 



Section 62: UNLOAD 

$60.1 THE UNLOAD DIRECTIVE 

Purpose 

Externalizes nominal records from data library to ASCII file. 

Format 

1 *UNLOAD unit = ldi [ , Dataset-id [ , Record-idJ ] I 
Required Parameters 

unit 

ldi 

Logical unit number of FORTRAN text file that will receive the 
unloaded records. The file must be opened new before the directive 
is issued. The unit-file connection is usually performed by an FOPEN 
directive (see examples). If the file is connected but is not a new 
file, 1 / 0  errors will likely result as the file is written sequentially. 

Logical Device Index (LDI) of the source library that will receive 
that supplies the unloading data. Must be open at  the time the 
directive is issued and be of GAL82 (nominal) format. 

Optional Parameters 

Dataset-id A generally masked dataset name that may be used to select 
datasets to be unloaded. If omitted, all datasete in the load file 
are not filtered. 

Record - id A generally masked record name that may be used to select records 
to be unloaded. If omitted, records names are not filtered. 

Description 

The source data library is scanned dataset by dataset. For each active dataset, CLIP 
tests on whether it is to be unloaded (in case selective unloading is specified by giving a 
Dataset-id). If so, appropriate header data are written to the receiving file, and all records 
that belong to that dataset are examined. If a record is to be unloaded, appropriate 
information is written to the file, followed by the character encoded values of the record 
items. The process continues until the data library is exhausted. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. 

CLIP Subsystem(s) Required 

NICE-DMS Interface. 

S t a t u s  

Operational. 

82-2 



$62.1 THE UNLOAD DIRECTIVE 

-3 

t 

EXAMPLE 62.1 
Unload the complete data library RESPONSE. LIB to file RESPONSE. VAL: 

*open 4,reeponse.lib 
*fopenhew 12,rerponee.val 
*unload 12 = 4 
*fclor. 12 
*type reeponse.va1 

The use of 4 and 12 for LDI and logical unit, respectively, is incidental. The TYPE directive is used 
to view the contents of the unload flle; this haa to be preceded by a *clorr command. Another 
way of viewing the data is using FREWIND and FPRINT: 

*open 4,rerpnee.lib 
*f openhew 12. rerponre . val 
*unload 12 = 4 e 

*frew 12 ; *fprint 12,100000 

EXAMPLE 62.2 
As above, but unload only dataseta whose name starts with H: 

*open 4,rerponee.lib 
*fopen/old 12,rerponre.val 
*load 12 = 4,H* 
*fclore 12 
*type rerponre.va1 

EXAMPLE 62.3 
As above, but unload only the complete record group HISTORY of dataset VELOCITIES: 

*open 4,rerponee.lib 
*fopen/old 12.reeponee.val 
*load 12 = 4.velocitier.hietory.l:h 
*fclore 12 
*type rerponee.va1 

62-3 



Section 62: UNLOAD 

THIS PAGE LEFT BLANK INTENTIONALLY. 

62-4 

f 

c 

c 



63 
WALLOCATE 

63-1 



Sectlon 63: WALLOCATE 

583.1 THE WALLOCATE DIRECTIVE 

Purpose 

Allocate scratch (unbacked) workrecord(s). 

Format 

I *WALLOCATE Workrecord [size] [/Type] [/DIM=dIm] I 

Required Parameters 

Workrecord The name of the record, or record group, to be allocated in the 
Workpool. 

size 

Word Qualifiers 

Type 

Phrase Qualifiers 

DIM=dirn 

If allocating a single record, logical (item) size of record. If omitted, 
one item is assumed. 
If allocating a record group: 

If positive, total number of items to allocate. 
If negative, total numbers of items per record. 
If zero, one is assumed. 

One-letter data type. See Table 63.1. If omitted, integer type is 
assumed if the workrecord name begins with one of the letters I 
through N, single floating otherwise. 

Specifies first matrix dimension. Not presently implemented. 

Processor Reference 

This directive may he submitted thraiigh the message entry point CLPUT. A direct, FOR- 
TRAN call is described in Volume 111. 

Description 

The allocate operation enters the workrecord name in the Workpool, reserves space to hold 
items, installs protection keywords, and initializes the reserved space to zero or blank, 
depending on whether the group is o f  numeric or character type, respectively. Records 
allocated by this directive are of scratch status; that is, not backed up by database copies. 
The allocation may be removed by entering a WDEALLOCATE directive. 

L 

f 

03-2 



I 
I 

i 

~ 

$63.1 THE WALLOCATE DIRECTIVE 

CLIP Subsystem(s) Required 

Workpool Manager. 

Status 

Operational. 

EXAMPLE 63.1 

Allocate floating record TEMP with 250 items: 

*WALL TEMP 260 

63-3 



~ 
~ 

Section 63: WALLOCATE 

Table 63.1. Workrecord Type Identifiers . 
Type Meaning 

A 

D Double-precision floating point. 

F or S 

I Integer. 

Character string (stored as Hollerith). 

Single-precision floating point. 

c 

63-4 



WCHANGE 

64-1 



Sectlon 64: WCHANGE 

564.1 THE WCHANGE DIRECTIVE 

Purpose 

Change logical size of workrecord. 

Format 

*WCHANCE Workkey = [size] [/BEGIN=:tem] 

Required Parameters 

Workke y The key of the workrecord or workgroup whose logical size is to be 
changed. 

size New logical record size. 

Phrase Qualifiers 

BEGIN= it em If the new size is bigger, start new space allocation at iternjl;  
item = 0 is acceptable. If this phrase does not appear, the new 
allocation is appended to the existing record. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. A direct FOR- 
TRAN call is described in Volume 111. 

Description 

The change operation modifies the logical size of a workrecord or workgroup. The new size 
may be smaller or larger than the previous size. If larger, space is appended to the record 
or records, unless the BEGIN qualifier specifies a different location. If smaller, the record 
tail is truncated. The operation will in general change the pool location of all following 
records. 

CLIP Subsystem(s) Required 

Work pool Manager. 

Status 

Operational. 

EXAMPLE 64.1 

Change the size of each record of workgroup CPLOT. 10:40 to 125 items: 

*WCHA TEMP = 125 

64-2 



65 
WCLOSE 

65-1 



Sectlon 65: WCLOSE 

565.1 THE WCLOSE DIRECTIVE 

Purpose 

Close backup workrecord. 

Format 

I *WCLOSE Workrecord I 
Required Parameters 

W o r k k e y  The name of the workrecord or workgroup to be closed. May con- 
tain backing characters. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. A direct FOR- 
TRAN call is described in Volume 111. 

Description 

The close operation is intended for backed workrecords. Each record marked as modified 
is written back to the backing library, then it is deallocated from the Workpool. A close 
operation applied to a scratch (unbacked) record functions as a deallocate operation. 

CLIP Subsystem(s) Required 

Workpool Manager. 

Status 

Not implemented. 

EXAMPLE 65.1 

Close all records that begin with G: 125 items: 

*WCLOSE G* 

65-2 



66 
W D EA L LO CAT E 

66-1 



Sectlon 66: WDEALLOCATE 

g66.l THE WDEALLOCATE DIRECTIVE 

Purpose 

Reclaim storage used by workrecord. 

Format 

[ WEALLOCATE Workrecord 1 
Required Pa rame te r s  

Workkcy The name of the workrecord or workgroup to be deallocated. 

Processor  Reference 

This directive may be submitted through the message entry point CLPUT. A direct FOR- 
TRAN call is described in Volume 111. 

Description 

The deallocate operation differs from the close operation in that no backup operation is 
performed. The storage taken by the workrecord(s) is released to the Workpool. It is 
primarily intended for scratch workrecords. 

CLIP Subsystem(s)  Required 

Workpool Manager. 

Status 

Operational. 

EXAMPLE 66.1 
Deallocate all records that begin with G:  125 items: 

*WDEALLOCATE G* 



07-1 

67 
WDEFINE 



~ 

Section 67: WDEFINE 

867.1 THE WDEFINE DIRECTIVE 

Purpose 

Define macrosymbol(s) from workrecord values. 

Format 

I *WDEFINE [/ Type] Macro-name = Workrecord I 
Required Parameters 

Macro-name The name of the macrosymbol or macrosymbol array to be defined. 
Same rules as for the DEFINE directive. 

Wo r kreco rd The workrecord whose items provide values for the macro defini- 
tion. Item selection may be specified with indexing within square 
brackets. 

Word Qualifiers 

Macro type; same as for the DEFINE directive except for default 
rule. If omitted, the workrecord type determines the macro type. 

Processor Reference 

This directive may be submitted through the message entry point CLPUT. A direct FOR- 
TRAN call is described in Volume 111. 

Description 

The define operation defines a macrosymbol or a macrosymbol array. It differs from the 
DEFINE directive in that the values are extracted from a workrecord rather than being 
specified in the directive itself. 

CLIP Subsystem(s) Required 

Workpool Manager. 

Status 

Operational. 

67-2 



$67.1 THE WDEFINE DIRECTIVE 

EXAMPLE 67.1 

Define float macro WORK and take the 3rd item of workrecord TRABAJO.6 as its value: 

EXAMPLE 67.2 

Define macrosymbol array VEC using all values in workrecord V: 

07-3 



~~~~ 

Sectlon 67: WDEFINE

.

THIS PAGE LEFT BLANK INTENTIONALLY.

87-4

67a
WDIMENSION

67a- 1

Sectlon 67a: WDIMENSION

507a.l THE WDIMENSION DIRECTIVE

Purpose

Change the first matrix dimension of a workrecord.

Format

~~

*WDIMENSION Workrecord = [d i m]

*

Required Parameters

Workrecord The name of the record, or record group, whose first matrix dimen-
sion is to be changed.

d im The new first matrix dimension.

Processor Reference

This directive may be submitted through the message entry point CLPUT. A direct FOR-
TRAN call is described in Volume 111.

Description

The dimension operation modifies the first matrix dimension size of a workrecord or
workrecord group. The new dimension may be smaller or larger than the previous di-
mension, with a minimum value of one.

CLIP Subsystem(s) Required

Workpool Manager.

Status

Operational.

07a 2

567a.l THE WDlMENSlON DIRECTIVE

EXAMPLE 67a.l

Change the first matrix dimension of record TEMP to 50:

*WDIM TEMP = 60

t

67a-3

Section 67a: WDlMENSlON

t

THIS PAGE LEFT BLANK INTENTIONALLY.

67a -4

68
WFLUSH

h

68-1

Section 68: WFLUSH

$68.1 THE WFLUSH DIRECTIVE

Purpose

Backup modified non-scratch workrecords.

Format

[*WFLUSH Workrecord 1
Required Parameters

W o r k r e c o r d Name of workrecords to be flushed. Name masking is allowed and
frequently used.

Processor Reference

This directive may be submitted through the message entry point CLPUT. A direct FOR-
TRAN call is described in Volume 111.

Description

The workrecords specified in the directive are examined one by one. If a record is backed
and modified, it is written to the database and the modified flag cleared.

CLIP Subsystem(s) Required

Workpool Manager.

Status

Not implemented I

EXAMPLE 68.1

Flush all modified backed records in the Workpool:

L

68-2

*WFLU *

69- - .l

69
WGET

Sectlon 69: WGET

569.1 THE WGET DIRECTIVE

Purpose ,

Read database record(s) into workrecord(s).

Format

I *WGET Workrecord = Record-id I
Required Parameters

Workrecord Name of the workrecord or workgroup that will receive the record(s).

Record-id A nominal record specification of the form
Ida, dsn, Record-name

If the record name is not specified, the workrecord name is assumed.

Processor Reference

This directive may be submitted through the message entry point CLPUT. A direct FOR-
T R A N call is described in Volume 111.

Description

The database records specified in the directive are accessed using GMGETC ot GMGETN and
read into the specified workrecord locations.

CLIP Subsystem(s) Required

Workpool Manager.

Status

Operational.

EXAMPLE 69.1

*WGET X = 4 , 1 6 , X X X [4 : 8]

09- 2

70
WHILE

70- 1

Sectlon 70: WHILE

s70.1 THE WHILE DIRECTIVE

Purpose

Introduces a WHILE-DO block.

Format
1 *WHILE logical-expression /DO I

Required Parameters

logical-expression An expression that evaluates to integer 0 for FALSE or 1 for
TRUE. More generally, a nonzero value is also interpreted as TRUE.
The expression is usually constructed through ordinary or logical
macrosymbols (see $4 and examples).
If the expression is TRUE, the commands that follows the WHILE
directive are executed; when the matching ENDWHILE is reached,
control jumps back to the WHILE directive for another test. If the
expression is FALSE, control passes to the command that follows the
matching ENDWHILE.

Description

A WHILE directive introduces a WHILE-DO block. The block must be terminated by a
matching ENDWHILE directive. Execution of the intervening commands is contingent upon
the value of the logical expression written in the WHILE line.

The procedure compiler transforms a WHILE line into a labeled IF directive. The label
is generated and assigned to the line that immediately follows the matching ENDWHILE.
When the compiler reaches the ENDWHILE, it generates a jump back to another generated
label that points to the WHILE line.

The WHILE-DO body may contain IF-THEN-ELSE blocks, DO loops and other WHILE-DO
blocks, as long as they are properly nested.

Da taline Restrictions

This direct.ive miist he in a dat,aline hy itself. The DO qiralificr milst, he in the same line
as the WHILE. If the logical-expression is so long that it requires continuation lines, you
should place the DO immediately after the WHILE.

Operational Restrictions

Works only inside a command procedure.

Processor Reference

Not applicable.

70- 2

.

a

570.1 THE WHILE DIRECTIVE

CLIP Subsystem(s) Required

Command Procedure.

Status

Operational.

EXAMPLE 70.1

The following illustrates a typical application in iterative problem solving:

*DEF tolerance = "Enter tolerance: 'I

*DEF error = l.E+lO
*WHILE C Cerror> /gt <tolerance> > /THEN

*ENDWHILE
*CALL ITERATE (rolution=<x> ; reridual=<orror>)

70 -3

Section 70: WHILE

L

THIS PAGE LEFT BLANK INTENTIONALLY.

70- 4

71
WMAP

71-1

Sectlon 71: WMAP

$71.1 THE WMAP DIRECTIVE

Purpose

Give a allocation map of the Workpool.

Format

I *WMAP [/BACK1 I
Work Qualifiers

BACK List backup information.

Processor Reference

This directive may be submitted through the message entry point CLPUT. A direct FOR-
TRAN call is described in Volume 111.

Description

This directive lists the workrecords that are presently in the Workpool, and the attributes
of these workrecords.

CLIP Subsystem(s) Required

Work pool Manager.

Status

Operational.

71 2

72
WMARK

72-1

Sectlon 72: WMARK

572.1 THE WMARK DIRECTIVE

Purpose

Mark workrecord(s) as modified.

Format

1 *WMARK Workrecord I

Processor Reference

This directive p a y be submitted through the message entry point CLPUT. A direct FOR-
TRAN call is described in Volume 111.

Description
I The workrecords specified in this directive are marked as modified if they are backed,

CLIP Subsystem(s) Required

Workpool Manager.

I

I Status
Not implemented.

72-2

I t

73
WOPEN

Section 73: WOPEN

$73.1 THE WOPEN DIRECTIVE

Purpose

Open database-backed workrecord(s).

Format

*WOPEN Workrecord [size] [/ Type1 = ld i , [Dataset-name 1, Record-name]]
[/OLD] [/NEW] [/DIM=dim]

Required Parameters

Workrecord The name of the record, or record group, to be allocated in the
Work pool.

sue

ldi,.. .

Word Qualifiers

Type

NEW

OLD

Phrase Qualifiers

DIM= dim

If allocating a single record, logical (item) size of record. If omitted,
one item is assumed.
If allocating a record group:

If positive, total number of items to allocate.
If negative, total numbers of items per record.

If zero, one is assumed.

Database linkage information for initialization/backup.

One-letter data type. See Table 63.1. If omitted, integer type is
assumed if the workrecord name begins with one of the letters I
through N, single floating otherwise.

Allocate new workrecord and initialize space.

Allocate old workrecord arid read contents from database.
If neither OLD nor HEY i s given, OLD is assirmed.

Specifies first matrix dimension. Not presently implemented.

Processor Reference

This directive may be submitted through the rnessagc entry point CLPUT. A direct FOR-
T R A N call is described in Volume 111.

I 73-2

c.

-
573.1 THE WOPEN DIRECTIVE

CLIP Subsystem(s) Required

Workpool Manager.

Stat us

Experimental.

EXAMPLE 73.1

Allocate floating record CAMP with a60 iteme:

*WOPEN CAMP 260 = 3 , HI, cIHp (NEW

73- -3

Section 73: WOPEN

4

THIS PAGE LEFT BLANK INTENTIONALLY.

73.- 4

t

t

74-1

WPOOL

Section 74: WPOOL

574.1 THE WPOOL DIRECTIVE

Purpose

Redefine extent and offset of Workpool.

Format

[*WPOOL eztent [/OFFSET=offsetl I ~

Required Parameters

eztent New size of Workpool in machine words.

Phrase Qualifiers

OFFSET= o f s e t Offset in machine words from the start of common block. Assumed
zero if not specified.

Processor Reference

This directive may be submitted through the message entry point CLPUT. A direct FOR-
T R A N call is described in Volume 111.

Description

This directive changes the default extent of the Workpool and possibly its offset with
respect to common block start. This operation is permitted only on a virgin Workpool.

CLIP Subsystem(8) Required

Workpool Manager.

Status

Not implemented.

EXAMPLE 74.1

Set the extent of the Workpool to 100000 words:

74--2

*WPOOL 100000

t.

75
WPRINT

75-1

Sectlon 75: WPRINT

$75.1 THE WPRINT DIRECTIVE

Purpose

Print contents of workrecord(s).

Format

I *WPRINT Workrecord [/Format] [/MATRIX] [lOUT=unit] I
~~ -

Required Parameters

Workrecord

Word Qualifiers

Format

MATRIX

Phrase Qualifiers

OUT= unit

Name of the workrecord or workgroup to be printed. Masking spec-
ifications are allowed.

An item print format identification string similar to FORTRAN;
for example E12.6. If omitted, a default print format related to the
workrecord type will be used.

Print record in matrix format using the matrix dimension attribute
as number of rows. Not implemented.

Write output to logical unit unit. If not given, output goes to the
CLIP print file (normally logical unit 6) .

Processor Reference

This directive may be submitted through the message entry point CLPUT. A direct FOR-
TRAN call is described in Volume 111.

I

I

Description

This print operation shows the contents of workrecords. The print is pcrformed using a
vector-print uti l i ty routine unless the qiialifirr NATRIX is specified, i n which c a w rectangtilnr
matrix print utilities are invoked.

,

CLIP Subsystem(s) Required

Work pool Manager.

Status

A

Operational.
I

75-2

~~ -~

575.1 THE WPRINT DIRECTIVE

EXAMPLE 75.1

Print floating-point record QLOAD .8 in E14.6 format:

*WPRINT QLOAD ,6 /E14.0

t
75--3

I

~

Section 75: WPRINT

THIS PAGE LEFT BLANK INTENTIONALLY.

75-4

76
WPUT

76-1

Section 76: WPUT

$78.1 THE WPUT DIRECTIVE

Purpose

Write workrecord(s) to nominal library.

Format

I *WPUT Record-id = Workrecord I
Required Parameters

Record - id A nominal record specification of the form
Id;, dsn, Record-name

If the record name is omitted, the workrecord name is used.

Workrecord Name of the workrecord or workgroup that contains the record(s)
to be written.

Processor Reference

This directive may be submitted through the message entry point CLPUT. A direct FOR-
TRAN call is described in Volume 111.

Description

The workrecord(s) specified in the directive are written using CMPUTC to GMPUTN to the
specified data library location.

CLIP Subsystem(s) Required

Workpool Manager.

Status

Operational .
EXAMPLE 76.1

Write workrecord XXX.3 tn dataset qDATA in I i h r y I :

*WPUT 4,qDATA = XXX.3

EXAMPLE 76.2

Write workgroup G. 3: 12 to dataset sequenced 57 in library 4, and change the record key to GIGI:

4

*WPUT 4,57,GIGI = GG.3:12

76- 2

77
WSET

77-1

Section 77: WSET

$77.1 THE WSET DIRECTIVE

Purpose

Set workrecord items to specified values.

Format

I *WSET Workrecord = value-list 1
Required Parameters

Workrecord The name of the workrecord whose items are to be set. If no item
index specification is given, values are stored beginning at the first
item.

A list of numeric values. The number of values in the list determines
how many items will be stored. Data type conversion is performed
as necessary.

value -1 tst

Processor Reference

This directive may be submitted through the message entry point CLPUT. A direct FOR-
TRAN call is described in Volume 111.

Description

This operation sets all or part of a workrecord to to specified values supplied in the item
list.

CLIP Siibsystem(s) Required

Workpool Manager.

Status

Operational.

EXAMPLE 77.1

Set the first, 10 items of workrecnrd LIST t o 1.2 .3 10:

, *WSET LIST = 1 : 10

EXAMPLE 77.2

Set item 45 of workrecord ANGLES to the sinc! of 45 :

I *WSET ANGLES[451 = <SIMD(45)>

77-2

$77.1 THE WSET DIRECTIVE

EXAMPLE 77.3

Set items 20 through 50 of workrecord PONY to tlic fraction one third:

*WSET PONY[20:601 = 310(1/3)

A

77- 3

~

7 b
Section 77: WSET

77 -4

THIS PAGE LEFT BLANK INTENTIONALLY.

J

Report Documentation Page

L9. Security ClaclnIf.(of this report) 20. Security Cirmif.(of the page)
Unclassified Unclassified

L. Ileport No.
NASA CR-178385

21. No. of Pages 22. Price
405 A18

2. Government Accession No. I
L. Title and Subtitle
The Computational Structural Mechanics Testbed Architecture
Volume I1 - Directives

fi.uthor(n)

Crulos A. Felippa t

#. Performing Organication Name and Address
Lockheed Missiles and Space Company, Inc.
Research and Development Division
5251 Hanover Street Palo Alto, California 94504
-
12. Sponsoring Agency Name and Addreu
Na.tiona1 Aeronautics and Space Administration
Langley Research Center
Ha,mpton, VA 25665-5225

16. 8UDDkmentw Notes

3. Recipient’n Catalog No.

5. Report Date

February 1989
6. Performing Organication Code

8. Performing Organication Report No.

LMSC-D878511
10. Work Unit No.

505-63-01-10
11. Contract or Grant No.

NAS 1- 18444
13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

t & r e n t affiiiation: Department of Aerospace Engineering and Center for Space Structures and Controls,
1Jniversity of Colorado, Boulder, CO 80509-0429

Langley Technical Monitor: W. Jefferson Stroud

This is the second of a set of five volumes which describe the software architecture for the Computational
Structural Mechanics Testbed. Derived from NICE, an integrated software system developed at Lockheed
F’alo Alto Research Laboratory, the architecture is composed of the command language (CLAMP), the
command language interpreter (CLIP), and the data manager (GAL). Volumes I, 11, and I11 (NASA CR’s
178584, 178585, and 178586, respectively) describe CLAMP and CLIP and the CLIP-processor interface.
Volumes IV and V (NASA CR’s 178587 and 178588, respectively) describe GAL and its low-level I/O.
CLAMP, an acronym for Command Language for Applied Mechanics Processors, is designed to control
tlhe flow of execution of processors written for NICE. Volume I1 describes the CLIP directives in detail.
It is intended for intermediate and advanced usem

-
16. Abstract

17. Kwy Words (Suggested by Authors(8))
Structural analysis software
Command language interface software
Data management software

18. Distribution Statement
Unclassified-Unlimited

i

A

